Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:40:38.392Z Has data issue: false hasContentIssue false

Fracture Surface Topography of Energetic Materials using Atomic Force Microscopy

Published online by Cambridge University Press:  10 February 2011

M. Y. D. Lanzerotti
Affiliation:
U. S. Army ARDEC, Picatinny Arsenal, NJ 07806 5000
L. V. Meisel
Affiliation:
Benet Laboratories, Watervliet Arsenal, Watervliet, NY 12189
M. A. Johnson
Affiliation:
Benet Laboratories, Watervliet Arsenal, Watervliet, NY 12189
A. Wolfe
Affiliation:
New York City Technical College, Brooklyn NY 11201
D. J. Thomson
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
Get access

Abstract

Height profiles spaced 0.008 μm apart across the fracture surface of TNT melt-cast in polycarbonate sleeves have been obtained with an atomic force microscope (AFM). Spatial power spectra (wavelengths of 0.016 μm to 4.0 μm) have been calculated using both a prolate spheroidal data window and a Kaiser window in the horizontal space domain prior to using a fast Fourier transform algorithm. Results based on topographical profiles across the surface include the following. The power spectral density of the individual fracture surface profiles is found to decrease with increasing spatial frequency over the dimensional region examined, ≈ 1.0 μm−1 to ≈ 10.0 μm−1. The spectral amplitudes are found to have a frequency dependence proportional to f s. The determined values of s in the dimensional region 1–10 μm−1 scatter in the range -1 < s < -4. Those values of s outside the range -3 < s < -2 indicate non-fractal fracture. There is significant structure in the spectra even for those with slopes within the range of a fractal dependence. Both observations are consistent with the appearance of numerous peaks in the spectra that indicate that a substantial amount of the fracture occurs at grain boundaries in the form of large clusters of TNT. Such a fracture process is deterministic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lanzerotti, M. Y. D. and Sharma, J., App. Phys. Lett. 39, pp. 455457 (1981).Google Scholar
2. Lanzerotti, M. Y. D., Pinto, J., and Wolfe, A. in Proc. Ninth Symposium (International) on Detonation, 1989, pp. 355361.Google Scholar
3. Lanzerotti, M. Y. D., Pinto, J., and Wolfe, A., Proc. Tenth Symposium (International) on Detonation, 1993, pp. 190198Google Scholar
4. Lanzerotti, M. Y. D. in Atomic Force. Microscopy/Scanning Tunneling Microscopy, edited by Cohen, S. H., Bray, M. T., and Lightbody, M. L.,(Plenum Press, New York, NY, 1995), pp. 127136.Google Scholar
5. Thomson, D. J., Proc. IEEE 70, pp. 2055–1096 (1982).Google Scholar
6. Thomson, D. J., Philos. Trans. R. Soc. London A332, pp. 539597 (1990).Google Scholar
7. Thomson, D. J., Robbins, M. F., Maclennan, C. G., and Lanzerotti, L. J., Physics of the Earth and Planetary Interiors 12, pp. 217231, (1976).Google Scholar
8. Krauss, T. P., Shure, Loren, Little, J. N., Signal Processing Toolbox User's Guide, The Math Works, 21 Eliot St., Natick, MA 01760 (1994).Google Scholar
9. Kaiser, J. F., 1974 IEEE Symposium on Circuits and Systems, pp. 2023 (1974).Google Scholar
10. Hamming, R. W., Digital Filters, Prentice-Hall, New Jersey, Chap. 9 (1977).Google Scholar
11. Brown, S. R. and Scholz, D. H., J. Geophys. Rev. 90, pp. 12,575–12,582 (1985).Google Scholar
12. Hough, S.E., Geophys. Res. Lett. 16, pp. 673676 (1985).Google Scholar
13. Choi, C., private communication, 1993.Google Scholar
14. Gallagher, H.G. and Sherwood, J. N., in Structure and Properties of Energetic Materials, edited by Liebenberg, D. H., Armstrong, R. W., and Gilman, J. J. (Mater. Res. Soc. Proc. 296, Pittsburgh, PA 1993), pp. 215219.Google Scholar