Published online by Cambridge University Press: 01 February 2011
This work investigates the effect of porogen loading on the fracture properties of methylsilsesquioxane (MSSQ) both before and after the porogen burnout process. The fracture behavior of the hybrid porogen/matrix materials differed significantly from that of the post-burnout materials. The most notable differences were alternative fracture paths and a trend of increasing fracture energy with increasing porogen loading. Characterization of the fracture surfaces indicate increasing amounts of carbon at the fracture interface corresponding to the increases in fracture energy and suggest bridging porogen molecules may be responsible for the increase in adhesion for the hybrid materials.