Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:54:32.556Z Has data issue: false hasContentIssue false

Fracture and Fractals in Glasses

Published online by Cambridge University Press:  03 September 2012

Elena A. Chechetkina*
Affiliation:
Institute of General and Inorganic Chemistry, Leninsky Pr.31, Moscow 117907, Russia
Get access

Abstract

Original model of bond waves is atpplied to the problem of fracture in glasses when considering it from the fractal point of view. Bond waves are assumed to be traveling above Tg, the glass transition temperature, and frozen in solid material(T<Tg), and just alone the stopped wavefronts (WF) populatedwith weakened bonds the fracture occurs. Crack, initiating at a given WF, then develops along WF's belonging to this system (a given bond wave) and/or another set (coexisting bond wave), and may oscillate between them. The arising surface represents a natural fractal whose fractal dimension depends on the mode of bond waves interaction and their arrangement relatively to the crack direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rawson, H., Properties and Applications of Glass (Elsevier, Amsterdam, 1980), p.147.Google Scholar
2. Choi, S.R. and Ritter, J.E., Phys. Chem. Glass. 32, 79 (1991).Google Scholar
3. Peitgen, H.O. and Richter, P.H., The Beauty of Fractals (Springer, Berlin, 1986).Google Scholar
4. Mandelbrot, B.B., Passoja, D.E. and Pauling, A.J., Nature 308, 721 (1984).Google Scholar
5. Poon, C.Y., Sayles, R.S. and Jones, T.A., J.Phys.D:Appl.Phys. 25, 1269 (1992).Google Scholar
6. Elliott, S.R., J.Phys.:Cond.Matt. 4, 7661 (1992).Google Scholar
7. Chechetkina, E.A., Sol. St. Comm. 87, 171 (1993).Google Scholar
8. Chechetkina, E.A., Sol. St. Comm. 91, 101 (1994).Google Scholar
9. Salmon, P.S., Proc. R. Soc. Lond. A445, 351 (1994).Google Scholar
10. Chechetkina, E.A., J.Phys.:Cond.Matt. 5, L527 (1993).Google Scholar
11. Dembovsky, S.A., Mater. Res. Bull. 16, 1331 (1981).Google Scholar
12. Ovshinsky, S.R., J. Non-Cryst. Solids 75, 161 (1985).Google Scholar
13. Haken, H., Information and Self-Organization (Springer, Berlin, 1988).Google Scholar
14. Donnadieu, P., J.Non-Cryst.Sol. 105,280 (1988); 111, 7 (1989).Google Scholar
15. Dembovsky, S.A., Kozuykhin, S.A. and Chechetkina, E.A., Mater. Res. Bull. 17, 801 (1982).Google Scholar
16. Dembovsky, S.A., Chechetkina, E.A. and Kozuykhin, S.A., Pis'ma Zh. Eksper. Teor. Fiz. 41, 74 (1985).Google Scholar
17. Chechetkina, E.A., Dembovsky, S.A., Kozuykhin, S.A., Podkopaev, V.G. and Sidorov, V.A., in Amorphous Semiconductors'84 (Bulg. Acad. Sci., Gabrovo, 1984), v.1, p.74.Google Scholar
18. Dembovsky, S.A. and Chechetkina, E.A., Phil.Mag. B53,367 (1986).Google Scholar
19. Kjems, J.K., in Fractals and Disordered Sysytems, edited by Bunde, A. and Havlin, S. (Springer, Berlin, 1991), p.263.Google Scholar
20. Fontana, A., Rocca, F., Fontana, M.P., Rosi, B. and Dianoux, A.J., Phys. Rev. B41, 3778 (1991).Google Scholar