Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:27:14.592Z Has data issue: false hasContentIssue false

Fourier Transform Infrared Absorbance and Photoluminescence Spectroscopy Studies of CdSe Colloidal Quantum Dot/Conducting Polymer Nanocomposites for Application to Infrared Photodetectors

Published online by Cambridge University Press:  01 February 2011

Kevin R. Lantz
Affiliation:
[email protected], Duke University, Electrical and Computer Engineering, Box 90291, Durham, NC, 27708-0291, United States
Adrienne D. Stiff-Roberts
Affiliation:
[email protected], Duke University, Electrical and Computer Engineering, Box 90291, Durham, NC, 27708-0291, United States
Get access

Abstract

In this paper we investigate the optical properties of four CdSe colloidal quantum dot/conducting polymer nanocomposites deposited on GaAs substrates using photoluminescence and Fourier transform infrared spectroscopy absorbance. The purpose of this investigation is to find an appropriate electron-conducting polymer for use in a photoconductor that utilizes intraband transitions in the conduction band to detect mid- to long-wave-infrared radiation. As a feasibility demonstration, we fabricate a two-terminal photoconductor and characterize its dark current and spectral responsivity (at 125 K), demonstrating intraband peaks at 0.465 and 0.527 eV, which correspond to 2.67 and 2.35μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McDonald, S. A., Cyr, P. W., Levina, L., and Sargent, E. H., Applied Physics Letters, 85 (11), 2089 (2004).Google Scholar
2. Choudhury, K. R., Kim, W. J., Sahoo, Y. et al. Applied Physics Letters, 89, 051109 (2006).Google Scholar
3. Konstantatos, G., Howard, I., Fischer, A. et al. Nature, 442, 180 (2006).Google Scholar
4. Guyot-Sionnest, P. and Hines, M. A., Applied Physics Letters, 72, 686 (1998).Google Scholar
5. Ginger, D. S., Dhoot, A. S., Finlayson, C. E., and Greenham, N. C., Applied Physics Letters, 77, 2816 (2000).Google Scholar
6. Binks, D., IEEE Journal of Quantum Electronics, 40, 1140 (2004).Google Scholar
7. Stiff-Roberts, A. D., Gupta, A., and Zhao, Z., Materials Research Society Proceedings, 939E, paper 0939-002-04 (2006).Google Scholar
8. Stiff-Roberts, A. D., International Journal of High Speed Electronics and Systems, in press (2007).Google Scholar
9. Campbell, I. H., Hagler, T. W., Smith, D. L. et al. Physical Review Letters, 76 (11), 1900, 1996.Google Scholar
10. Dabbousi, B. O., Bawendi, M. G. et al. Applied Physics Letters, 66 (11), 1995.Google Scholar
11. Chakrabarti, S., Stiff-Roberts, A. D., Bhattacharya, P., and Kennerly, S. W., Journal of Vacuum Science and Technology B, 22(3), 1499 (2004).Google Scholar