Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:12:50.308Z Has data issue: false hasContentIssue false

Fourier Thermal Analysis of Eutectic Al-Si Alloy with Different Sr Content

Published online by Cambridge University Press:  01 February 2011

R. Aparicio
Affiliation:
CINVESTAV Queretaro, Libramiento Norponiente 2000, Real de Juriquilla, 76230 Queretaro Qro. Mexico, [email protected]
G. Barrera
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH. Apdo. Postal 888 Centro, 58000. Morelia Mich. México. [email protected]
G. Trapaga
Affiliation:
CINVESTAV Queretaro, Libramiento Norponiente 2000, Real de Juriquilla, 76230 Queretaro Qro. Mexico, [email protected]
C. Gonzalez
Affiliation:
Department of Metallurgical Engineering, Facultad de Química, UNAM, Edificio “D” Circuito de los Institutos s/n, Cd. Universitaria, 04510 México D. F., México. [email protected]
Get access

Abstract

The purpose of this work is to explore the capability of Fourier Thermal Analysis (FTA) to detect differences in solidification kinetics between unmodified and Sr modified eutectic Al-Si alloy obtained from the same base alloy. Experimental melts are produced in silicon carbide crucibles using an electrical resistance furnace and burdens of A356 alloy and commercial purity Si. The addition of strontium to the melts is accomplished using Al-10 pct Sr master alloy rod. Chemical composition is controlled using spark emission spectrometry. The changes in microstructure are characterized using optical microscopy. Thermal analysis are performed in cylindrical stainless steel cups coated with a thin layer of boron nitride, using two type-K thermocouples connected to a data acquisition system. Experimental cooling curves are numerically processed using FTA. Results show changes in solidification kinetics of eutectic Al-Si alloy with different Sr content. These changes, measured at the beginning and during solidification of the probes, can be related to the changes in nucleation and growth causing the differences detected during microstructural characterization of the probes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gruzleski, J. E.: American Foundrymens Society Inc. (1990).Google Scholar
2. Lu, S.Z., Hellawell, A.: Metall. Trans. A, Vol. 18A (1987), p. 1721.Google Scholar
3. Dahle, A.K., Nogita, K., Zindel, J.W., McDonald, S.D., and Hogan, L.M.: Met. Mater. Trans. A, Vol. 32A (2001), p. 949.Google Scholar
4. Cho, Y.H., Lee, H.C., oh, K.H. and Dahle, A. K.: Met. Mater. Trans. A, Vol. 39A (2008), p. 2435.Google Scholar
5. Cho, Y.H. and Dahle, A.K.: Met. Mat. Trans. A, Vol. 40A (2009), p. 1011.Google Scholar
6. Gonzalez-Rivera, C., Campillo, B., Castro, M, Herrera, M., Juarez-Islas, J.: Materials Science and Engineering A, Vol. 279 (2000), p. 149.Google Scholar
7. Carlos, González R., Héctor, Cruz M., José, García H., Juarez, I: J. Mater. Eng. Performance, Vol. 8.1 (1999), p. 103.Google Scholar
8. Cetin, A. and Kalkanli, A.: J. Mater. Proc. Tech., Vol. 209 (2009), p.4795.Google Scholar
9. Kapturkiewicz, W., Burbielko, A., and Lopez, H.F.: AFS Trans., Vol. 101 (1993), p. 505.Google Scholar
10. Barlow, J.O. and Stefanescu, D.M.: AFS Trans., Vol. 105 (1997), p. 339.Google Scholar
11. Emadi, D. and Whiting, L.: AFS Trans., Vol. 110 (2002), p. 285.Google Scholar