Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T02:36:29.549Z Has data issue: false hasContentIssue false

Formation Process of Si Nanoparticles Formed by Laser Ablation Method

Published online by Cambridge University Press:  09 August 2011

T. Makimura
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan, [email protected]
T. Mizuta
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan, [email protected]
T. Ueda
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan, [email protected]
K. Murakami
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan, [email protected]
Get access

Abstract

Utilizing laser ablation of Si targets, nanoparticles can be cleanly formed in rare gas. In order to fabricate nanoparticles with well-defined structures such as those whose surfaces are chemically modified, it is important to investigate the formation process of the nanoparticles. We have developed a decomposition method for measuring time-resolved spatial distributions of nanoparticles in rare gas. Applying this method, we have investigated formation processes of silicon nanoparticles in 2-Torr argon gas. The nanoparticles are found to grow from 300 Ais to 1 ms after the ablation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Makimura, T., Kunii, Y., Ono, N. and Murakami, K., Appl. Surf. Sci. 127–129, 388 (1998).Google Scholar
3. Makimura, T., Kunii, Y. and Murakami, K., Jpn. J. Appl. Phys. 35 Part 1, 4780 (1996).Google Scholar
4. Yoshida, T., Takeyama, S., Yamada, Y. and Mutoh, K., Appl. Phys. Lett. 68, 1772 (1996).Google Scholar
5. Geohegan, D. B., Puretzky, A. A., Dusher, G. and Pennycook, S. J., Appl. Phys. Lett. 73, 438 (1998).Google Scholar
6. Geohegan, D. B., Puretzky, A. A., G. Dusher and Pennycook, S. J., Appl. Phys. Lett. 72, 2987 (1998).Google Scholar
7. Kanemitsu, Y., in Optical Properties of Low-Dimensional Materials, edited by Ogawa, T. and Kanemitsu, Y. (World Scientific, Singapore, 1995), Chap. 5.Google Scholar
8. Werwa, E., Seraphin, A. A., Chiu, L. A., Zhou, Chuxin, Kolenbrander, K.D., Appl. Phys. Lett. 64, 1821, (1994).Google Scholar
9. Murakami, K., Makimura, T., Ono, N., Sakuramoto, T., Miyashita, A. and Yoda, O., Appl. Surf. Sci. 127–129, 368 (1998).Google Scholar
10. These are most possible; We have confirmed that as-deposited nanoparticles formed in either oxygen gas or hydrogen gas diluted with argon gas exhibit photoluminescence.Google Scholar
11. Geohegan, D. B., in Pulsed Laser Deposition of Thin Films, edited by Chrisey, D. B. and Hubler, G. K. (Wiley-Interscience Publisher, 1994), Chap. 5.Google Scholar
12. Muramoto, J., Nakata, Y., Okada, T. and Maeda, M., Jpn. J. Appl. Phys. 36 Part 2, L563 (1997).Google Scholar
13. Muramoto, J., Nakata, Y., Okada, T. and Maeda, M., Appl. Surf. Sci. 127–129, 373 (1998).Google Scholar
14. Boufendi, L., Hernamm, J., Bouchoule, A. and Dubreuil, B., J. Appl. Phys. 76, 148 (1994).Google Scholar
15. Makimura, T. and Murakami, K., Appl. Surf. Sci. 96–98, 242 (1996).Google Scholar
16. Striganov, A. R. and Sventitikii, N. S.: Tables of Spectral Lines of Neutrals and Ionized Atoms (IFI-Plenum, New York, 1968).Google Scholar
17. Rapp, D. and Englander-Golden, P., J. Chem. Phys. 43, 1464 (1965).Google Scholar
18. Marine, W., d'Aniello, J. M. Scotto, Gerri, M. and Thomsen-Schmidt, P., in Lf.ser Ablation of Electronic Materials, Basic Mechanisms and Applications, edited by Fogarassy, E. and Lazare, S. (Elsevier, Amsterdam, 1992), p. 89.Google Scholar