Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T11:51:49.891Z Has data issue: false hasContentIssue false

Formation of ZnO Doped with Mn Thin Film by Electrodeposition and Magnetic Behaviour.

Published online by Cambridge University Press:  15 February 2011

M. Abid
Affiliation:
EPFL, Institut de Physique des Nanostructures, Station 3, CH-1015 Lausanne (Switzerland).
C. Terrier
Affiliation:
EPFL, Institut de Physique des Nanostructures, Station 3, CH-1015 Lausanne (Switzerland).
J-P Ansermet
Affiliation:
EPFL, Institut de Physique des Nanostructures, Station 3, CH-1015 Lausanne (Switzerland).
K. Hjort
Affiliation:
Uppsala University, Angstrom Laboratory, Materials Science department, Polackbäcken (Sweden).
Get access

Abstract

Following the theory, ferromagnetism is predicted in Mn- doped ZnO, Indeed, ferromagnetism above room temperature was recently reported in thin films as well as in bulk samples made of this material. Here, we have prepared Mn doped ZnO by electrodeposition. The samples have been characterized by X-ray diffraction and spectroscopic methods to ensure that the dopants are substitutional. Some samples exhibit weak ferromagnetic properties at room temperature, however to be useful for spintronics this material need additional carriers provided by others means.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wolf, S. A., J. Supercond. 13 (2000), 195.Google Scholar
2. Prinz, G. A., Science 282 (1998), 1660.Google Scholar
3. Furdyna, J. K., J. Appl. Phys. 64, (1988), R24.Google Scholar
4. Dietl, T., Ohno, H., Matsukura, F., Cubert, J., and Ferrand, D., Science, 287, (2000), 1019.Google Scholar
5. Sato, K. and Katayama-Yoshida, H., Jpn. J. Appl. Phys., Part 2 39 (2000), L555.Google Scholar
6. Sharma, P., Gupta, A., Rao, K. V., Owens, F. J., Sharma, R., Ahuja, R., Osorio Guillen, J. M., Johansson, B. and Gehring, G. A., Nature Mater., 2 (2003), 673.Google Scholar
7. Peulon, S., Lincot, D. Adv. Mater. 8 (1996), 166.Google Scholar
8. Peulon, S., Lincot, D., J. Electrochem. Soc. 145 (1998), 864.Google Scholar
9. Izaki, M., Omi, T., J. Electrochem. Soc. 143 (1996), 166.Google Scholar
10. Izaki, M., Omi, T., Appl Phys. Lett. 68 (1996), 2439.Google Scholar
11. Izaki, M., Omi, T., J. Electrochem. Soc. 144 (1997), 1949.Google Scholar
12. Lee, H.-J., Jeong, S.-Y., Cho, C. R. and Park, C. H., Appl. Phys. Lett., 81 (2002) 21, 4020.Google Scholar
13. Jin, Z. W., Murakami, M., Fukumura, T., Matsumoto, Y., Ohtomo, A., Kawasaki, M., and Koinuma, H., J. Cryst. Growth, 214/215, (2000), 55.Google Scholar
14. Cheng, X.M. and Chien, C.L., J. of. App. Phys, (93), (2003), 10, 7876.Google Scholar
15. Spaldin, N. A., Phys. Rev. B, 69 (2004), 125201–1.Google Scholar