Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:41:15.472Z Has data issue: false hasContentIssue false

Formation of SiGe and SiGeC Layers on Si by Ge and C Ion Implantation and Subsequent Ion-Beam-Induced Epitaxial Crystallization

Published online by Cambridge University Press:  22 February 2011

Naoto Kobayashi
Affiliation:
Electrotechnical Laboratory 1-1-4 Umezono, Tsukuba, Ibaraki 305 Japan
Masataka Hasegawa
Affiliation:
Electrotechnical Laboratory 1-1-4 Umezono, Tsukuba, Ibaraki 305 Japan
J.R. Phillips
Affiliation:
Electrotechnical Laboratory 1-1-4 Umezono, Tsukuba, Ibaraki 305 Japan
Nobuyuki Hayashi
Affiliation:
Electrotechnical Laboratory 1-1-4 Umezono, Tsukuba, Ibaraki 305 Japan
Hisao Tanoue
Affiliation:
Electrotechnical Laboratory 1-1-4 Umezono, Tsukuba, Ibaraki 305 Japan
Hajime Shibata
Affiliation:
Electrotechnical Laboratory 1-1-4 Umezono, Tsukuba, Ibaraki 305 Japan
Yunosuke Makita
Affiliation:
Electrotechnical Laboratory 1-1-4 Umezono, Tsukuba, Ibaraki 305 Japan
Get access

Abstract

Fabrication of Si1-xGex and Si-1-x-yGexCy layers on Si(100) by high-dose ion implantation of 72Ge ions without and with 12C ions and subsequent high-energy and low-energy ion-beam-induced epitaxial crystallization (IBIEC) has been investigated. Structural properties of the surface layers were observed by RBS-channeling technique. Si(100) wafers were implanted with 150keV and 80keV Ge ions at room temperature so as to produce a peak concentration of Ge amounting to approximately 2 and 14 at.%, respectively. C ions were additionally implanted to a fluence of 10% of Ge concentration for the SiGeC samples. IBΓEC experiments performed with 400keV 18Ar ion bombardments have induced crystallization of the amorphous layers of SiGe and SiGeC on Si up to the surface at 400°C for both samples with low Ge concentration (2%) and high Ge concentration (14%). IBIEC using 72Ge ions with energies whose projected ranges are within the amorphous layer was alternatively performed for SiGe layer on Si. Bombardments of 140keV and 40keV Ge ions at 400°C have induced crystallization up to the surface with a slight disorder in the grown layer. Present experimental results suggest a novel ion beam synthesis method of fabrication of SiGe (SiGeC) on Si at low temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Temkin, H., Bean, J.C., Antreasyan, A. and Leibenguth, R., Appl. Phys. Lett. 52, 1089 (1988).Google Scholar
2 Patton, G.L., Comfort, J.H., Meyerson, B.S., Crabbé, E.F., Scilla, G.J., de Frésart, E., Stork, J.M.C., Sun, J.Y.C., Harame, D.L. and Burghartz, J.N., IEEE Electron Device Lett. EDL–12, 154 (1991).Google Scholar
3 Nayak, D.K., Woo, J.C., Park, J.S., Wang, K.L. and MacWilliams, K.P., IEEE Electron Device Lett. EDL–11, 171 (1990).Google Scholar
4 Furukawa, S., Etoh, H., Ishizawa, A. and Shimada, T., U.S. Patent No. 4 885 614 (5 December 1989).Google Scholar
5 Eberl, K., Iyer, S.S., Zollner, S.. Tsang, J.C. and LeGoues, F.K., Appl. Phys. Lett. 60, 3033 (1992).Google Scholar
6 Fukami, A., Shoji, K., Nagano, T. and Yang, C.Y., Appl. Phys. Lett. 57, 2345 (1990).Google Scholar
7 Hong, Q.Z., Zhu, J.G., Mayer, J.W., Xia, W. and Lau, S.S., J. Appl. Phys. 71, 1768 (1992).Google Scholar
8 Chilton, B.T., Robinson, B.J., Thompson, D.A., Jackman, T.E. and -M. Barbeau, J., Appl. Phys. Lett. 54, 42 (1992).Google Scholar
9 Gupta, A., Cook, C., Toyoshiba, L., Qiao, J., Yang, C.Y., Shoji, K., Fukami, A, Nagano, T. and Tokuyama, T., J. Electronic Mater. 22, 125 (1993).Google Scholar
10 Elliman, R.G. and Wong, W.C., Nucl. Inst. and Meth. B, 80/81, 768 (1993).Google Scholar
11 Linnros, J., Holmen, G. and Svensson, B., Phys. Rev. B, 32, 2770 (1985).Google Scholar
12 Williams, J.S., Elliman, R.G., Brown, W.L. and Seidel, T.E., Phys. Rev. Lett. 55, 1482 (1985).Google Scholar
13 Nakata, J., Phys. Rev. B, 43, 14643 (1991).Google Scholar
14 Jackson, K.A., J. Mat. Res. 3, 1218 (1988).Google Scholar
15 Elliman, R.G., Ridgway, M.C., Williams, J.S. and Bean, J.C., Appl. Phys. Lett. 55, 843 (1989).Google Scholar
16 Yu, A.J., Ph.D. Thesis, Cornell University (1989).Google Scholar
17 Elliman, R.G., Ridgway, M.C. and Williams, J.S., Mater.Res. Soc. Proc. 157, 105 (1990).Google Scholar
18 Kobayashi, N., Hasegawa, M. and Hayashi, N., Proceedings of the 3rd ШMRS Int. Conf. on Advanced Materials 1993 (in press).Google Scholar
19 Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon Press, New York, 1985).Google Scholar
20 Paine, D.C., Howard, D.J., Stoffel, N.G. and Horton, J.A., J. Mater. Res. 5, 1023 (1990).Google Scholar
21 Kobayashi, N., Hasegawa, M. and Hayashi, N., Nucl. Instr. and Meth. B, 80/81, 790 (1993).Google Scholar