Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T18:50:39.081Z Has data issue: false hasContentIssue false

Formation of Raised Source/Drain Junctions by Rapid Thermal Chemical Vapor Deposition

Published online by Cambridge University Press:  15 February 2011

Mehmet C. Öztürk
Affiliation:
North Carolina State University Department of Electrical and Computer Engineering, Box 7911, Raleigh, NC 27695–7911
Jimmie J. Wortman
Affiliation:
North Carolina State University Department of Electrical and Computer Engineering, Box 7911, Raleigh, NC 27695–7911
Get access

Abstract

In this paper, we present alternative uses of rapid thermal chemical vapor deposition (RTCVD) in forming junctions for the raised source/drain MOSFET. The results will include applications of epitaxial silicon, SixGe1−x and TiSi2 all selectively deposited in dedicated coldwalled, lamp heated high or ultra high vacuum RTCVD reactors. Two general approaches will be considered : 1) ultra shallow junction formation in silicon followed by a selective deposition process to form a raised contact, 2) selective deposition to obtain a layer that can be used as a solid diffusion source and as a sacrificial layer for self-aligned silicide formation. In the first approach, junctions are formed typically by low energy ion-implantation. In this paper, we present rapid thermal vapor phase doping (RTVPD) as an alternative to ion-implantation to form defect free ultra-shallow junctions in Si. The method involves exposing a silicon wafer to a dopant gas (such as B2H6) at a moderate temperature (∼600°C) for a short time and subsequent annealing for drive-in. This is followed by either selective epitaxy and conventional self-aligned TiSi2 formation or selective deposition of a low-resistivity C54 TiSi2 from TiCl4 and SiH4. In the second approach, first, a semiconductor (Si, polysilicon or SixGe1−x) is deposited selectively. If the material is undoped, doping can be achieved by ion-implantation. In-situ doping is also possible as will be shown with p- and n-type SixGe1−x at temperatures as low as 625°C using B2H6 or PH3. The doped layer is then used as a solid diffusion source to form the junctions by out-diffusion. Using these different approaches, we present examples of high quality junctions in Si as shallow as a few hundred angstroms. The techniques are compared based upon their robustness, complexity, equipment and thermal budget requirements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Osburn, C. M., Journal of Electronic Materials, 19, 67 (1990).Google Scholar
2 VanDenHove, L., Ph. D. Thesis, Katholieke Universiteit Leuven, 1988.Google Scholar
3 Wong, S. S., Bradbury, D. R., Chen, D. C. and Chiu, K. Y., IEDM Extended Abstracts: IEDM-84, 634, Washington (December 1984).Google Scholar
4 Lynch, W. T., Foo, P. D., Liu, R., Lebowitz, J., Orlowsky, K. J., Georgiou, G. E. and Hillenius, S. J., Solid State Devices, 25 (1988).Google Scholar
5 Shibata, H., Suizu, Y., Samata, S., Matsuno, T. and Hashimoto, K., IEDM Extended Abstracts : IEDM-87, 590, (December 1987).Google Scholar
6 Shin, H., Tasch, A. F., Bordelon, T. J. and Maziar, C. M., IEEE Transactions on Electron Devices, 39, 1922 (1992).Google Scholar
7 Öztürk, M. C., Wortman, J. J. and Fair, R. B., Applied Physics Letters, 52, 963 (1988).Google Scholar
8 Cheung, N. W., Nuclear Instrumentals and Methods in Physics Research, B55, 811 (1991).Google Scholar
9 Carey, P. G., Bezjian, K., Sigmon, T. W., Gildea, P. and Magee, T. J., IEEE Electron Device Letters, EDL–7, 440 (1986).Google Scholar
10 Jiang, H., Osburn, C. M., Smith, P., Xiao, Z. G., Griffis, D., McGuire, G. and Rozgonyi, G. A., Journal of the Electrochemical Society, 139, 196 (1992).Google Scholar
11 Kim, K. T. and Kim, C.K., IEEE Electron Device Letters, EDL–8, 569 (1987).Google Scholar
12 Kiyota, Y., Onai, T., Nakamura, T., Inada, T., Kuranouchi, A. and Hirano, Y., IEEE Transaction on Electron Devices, 39, 2077 (1992).Google Scholar
13 Nishizawa, J., Aoki, K. and Akamine, T., Applied Physics Letters, 56, 1334 (1990).Google Scholar
14 Saitoh, N., Akamine, T., Aoki, K. and Kojima, Y., Journal of Applied Physics, 32, 4404 (1993).Google Scholar
15 Violette, K. E., Sanganeria, M. K., Öztürk, M. C., Harris, G. and Maher, D. M., Journal of the Electrochemical Society, 141, 3269 (1994).Google Scholar
16 Sanganeria, M. K., Violette, K. E., Öztüirk, M. C., Harris, G. and Maher, D. M., Applied Physics Letters, 66, 1255 (1995).Google Scholar
17 O'Neil, P. A., Violette, K. E., Öztürk, M. C. and Ivanov, I. C., Material Research Society Proceedings : Rapid Thermal and Integrated Processing, San Fransisco (April 1995).Google Scholar
18 Reynolds, G. J., Cooper, C. B. and Gaczi, P. J., Journal of Applied Physics, 65, 3212 (1989).Google Scholar
19 Regolini, J. L., Bensahel, D. and Bomchel, G., Applied Surface Science, 38 408 (1989).Google Scholar
20 Xing, G. C. and Ozturk, M. C., Materials Letters, 17, 379 (1993).Google Scholar
21 Mendicino, M. A. and Seebauer, E. G., Journal of the Electrochemical Society, 140, 1786 (1993).Google Scholar
22 Saito, K., Amazawa, T. and Arita, Y., Journal of the Electrochemical Society, 140, 153 (1993).Google Scholar
23 Ilderem, V. and Reif, R., Journal of the Electrochemical Society: Solid-State Science and Technology, 135, 2590 (1988).Google Scholar
24 Ren, X., Gladden, D. B., Öztürk, M. C. and Batchelor, A. D., Materials Research Society Proceedings : Rapid Thermal and Integrated Processing, San Fransisco (April 1995).Google Scholar
25 Sanganeria, M. K., Violette, K. E., Öztürk, M. C., Harris, G., Lee, C. A. and Maher, D. M., Materials Letters, 21, 137 (1994).Google Scholar
26 Sanganeria, M. K., Violette, K. E., Öztürk, M. C., Harris, G. and Maher, D. M., Journal of the Electrochemical Society, 142, 285 (1995).Google Scholar
27 Violette, K. E., O'Neil, P. and Öztürk, M. C., Materials Research Society Proceedings Rapid Thermal and Integrated Processing, San Fransisco (April 1995).Google Scholar
28 Zhong, Y. L., Öztürk, M. C., Grider, D. T., Wortman, J. J. and Littlejohn, M. A., Applied Physics Letters, 57, 2092 (1990).Google Scholar
29 Ashburn, S., Ph.D. Thesis, North Carolina State University, 1994.Google Scholar
30 Ashburn, S. P. and Öztürk, M. C., Journal of Electronic Materials (In Print), (1995).Google Scholar
31 Grider, D. T., Ph.D. Thesis, North Carolina State University, 1993.Google Scholar
32 Grider, D. T., Öztürk, M. C., Ashburn, S. P., Wortman, J. J., Harris, G. and Maher, D., Journal of Electronic Materials (In Print), (1995).Google Scholar