Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:50:45.308Z Has data issue: false hasContentIssue false

Formation of Planar and Strip Waveguides in KNbO3 by He Ion Implantation

Published online by Cambridge University Press:  15 February 2011

D. Fluck
Affiliation:
Inst. Quantum Electronic, Swiss Fed. Inst. of Technology, CH-8093 Zürich, Switzerland
M. Fleuster
Affiliation:
Institut für Schicht- und Ionentechnik (ISI-KFA), Forschungszentrum, D-5170 Jülich, W. Germany
R. Irmscher
Affiliation:
Institut für Schicht- und Ionentechnik (ISI-KFA), Forschungszentrum, D-5170 Jülich, W. Germany
P. Günter
Affiliation:
Inst. Quantum Electronic, Swiss Fed. Inst. of Technology, CH-8093 Zürich, Switzerland
C H. Buchal
Affiliation:
Institut für Schicht- und Ionentechnik (ISI-KFA), Forschungszentrum, D-5170 Jülich, W. Germany
Get access

Abstract

Single crystals of KNbO3 have an excellent potential for integrated and nonlinear optical applications. MeV He ion implantation is a reliable technique for the formation of permanent optical waveguides in this material. We have fabricated planar and strip waveguides using He energies between 1 and 3.5 MeV and ion doses of 5 × 1013 to 1016 ions/cm2. Waveguides were analyzed at a wavelength of 514, 633 and 860 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Günter, P., Optics Commun. 11, 285 (1974).10.1016/0030-4018(74)90183-7CrossRefGoogle Scholar
[2]. Günter, P., Phys. Reports 93, 199 (1982).10.1016/0370-1573(82)90007-2Google Scholar
[3]. Baumert, J.C., Günter, P., and Melchior, H., Opt. Commun. 48, 215 (1983).10.1016/0030-4018(83)90089-5Google Scholar
[4]. Günter, P., Asbeck, P.M., and Kurtz, S.K., Appl. Phys. Lett. 35, 461 (1979).10.1063/1.91169Google Scholar
[5]. Bremer, T., Heiland, W., Hellermann, B., Hertel, P., Krätzig, E., and Kollewe, D., Ferroelectr. Lett. 9, 11 (1988).Google Scholar
[6]. Zhang, L., Chandler, P.J., and Townsend, P.D., Ferroelectr. Lett. 11, 89 (1990).10.1080/07315179008200806Google Scholar
[7]. Strohkendl, F.P., Günter, P., Buchal, Ch., and Irmscher, R., J. Appl. Phys. 69, 84 (1991).Google Scholar
[8]. Strohkendl, F.P., Fluck, D., Günter, P., Irmscher, R., and Buchal, Ch., Appl. Phys. Lett., 59, 26 (1991) p**10.1063/1.105724Google Scholar
[9]. Biersack, J., and Haggmark, L., Nucl. Instr. Meth. 174, 257 (1980)10.1016/0029-554X(80)90440-1Google Scholar
[10]. Chandler, P.J., and Lama, F.L., Opt. Acta 33, 127 (1986)10.1080/713821921Google Scholar
[11]. Reed, G.T., and Weiss, L.B., Electronics Lett. 23, 792 (1987).Google Scholar
[12]. Irmscher, R., Fluck, D., Buchal, Ch., Stritzker, B., and Günter, P., Mat. Res. Soc. Symp. Proc. 201, 399 (1991).Google Scholar
[13]. Fluck, D., Irmscher, R., Buchal, Ch., and Günter, P., Appl. Phys. Lett. 59, 25 (1991) p**Google Scholar