Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:10:46.519Z Has data issue: false hasContentIssue false

Formation of Ohmic Carrier Injection at Anode/organic Interfaces and Carrier Transport Mechanisms of Organic Thin Films

Published online by Cambridge University Press:  31 January 2011

Toshinori Matsushima
Affiliation:
[email protected], Japan Advanced Institute of Science and Technology, School of Materials Science, Nomi, Ishikawa, Japan
Guang-He Jin
Affiliation:
[email protected], Japan Advanced Institute of Science and Technology, School of Materials Science, Nomi, Ishikawa, Japan
Yoshihiro Kanai
Affiliation:
[email protected], Japan Advanced Institute of Science and Technology, School of Materials Science, Nomi, Ishikawa, Japan
Tomoyuki Yokota
Affiliation:
[email protected], Japan Advanced Institute of Science and Technology, School of Materials Science, Nomi, Ishikawa, Japan
Seiki Kitada
Affiliation:
[email protected], Japan Advanced Institute of Science and Technology, School of Materials Science, Nomi, Ishikawa, Japan
Toshiyuki Kishi
Affiliation:
[email protected], Japan Advanced Institute of Science and Technology, School of Materials Science, Nomi, Ishikawa, Japan
Hideyuki Murata
Affiliation:
[email protected], Japan Advanced Institute of Science and Technology, School of Materials Science, Nomi, Ishikawa, Japan
Get access

Abstract

We have shown that hole mobilities of a wide variety of organic thin films can be estimated using a steady-state space-charge-limited current (SCLC) technique due to formation of Ohmic hole injection by introducing a very thin hole-injection layer of molybdenum oxide (MoO3) between an indium tin oxide anode layer and an organic hole-transport layer. Organic hole-transport materials used to estimate hole mobilities are 4,4′,4″-tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine (m-MTDATA), 4,4′,4″-tris(N-2-naphthyl-N-phenyl-amino)triphenylamine (2-TNATA), rubrene, N,N′-di(m-tolyl)-N,N′-diphenylbenzidine (TPD), and N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (α-NPD). These materials are found to have electric-field-dependent hole mobilities. While field dependence parameters (β) estimated from SCLCs are almost similar to those estimated using a widely used time-of-flight (TOF) technique, zero field SCLC mobilities (μ0) are about one order of magnitude lower than zero field TOF mobilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) VanSlyke, S. A. Chen, C. H. and Tang, C. W. Appl. Phys. Lett. 69, 2160 (1996).Google Scholar
(2) Chen, S.-F. and Wang, C.-W., Appl. Phys. Lett. 85, 765 (2004).Google Scholar
(3) Tokito, S. Noda, K. and Taga, Y. J. Phys. D: Appl. Phys. 29, 2750 (1996).Google Scholar
(4) Matsushima, T. Kinoshita, Y. and Murata, H. Appl. Phys. Lett. 91, 253504 (2007).Google Scholar
(5) Matsushima, T. and Murata, H. J. Appl. Phys. 104, 034507 (2008).Google Scholar
(6) Matsushima, T. Jin, G.-H., and Murata, H. J. Appl. Phys. 104, 054501 (2008).Google Scholar
(7) Abkowitz, M. Facci, J. S. and Rehm, J. J. Appl. Phys. 83, 2670 (1998).Google Scholar
(8) Lampert, M. A. and Mark, P. Current Injection In Solids (ACADEMIC, New York, 1970).Google Scholar
(9) Murgatroyd, P. N. J. Phys. D: Appl. Phys. 3, 151 (1970)Google Scholar
(10) Giebeler, C. Antoniadis, H. Bradley, D. D. C. and Shirota, Y. Appl. Phys. Lett. 72, 2448 (1998).Google Scholar
(11) Cheung, C. H. Kwok, K. C. Tse, S. C. and So, S. K. J. Appl. Phys. 103, 093705 (2008).Google Scholar
(12) Lee, H. Cho, S. W. Han, K. Jeon, P. E. C.-N. Whang, Jeong, K. Cho, K. and Yi, Y. Appl. Phys. Lett. 93, 043308 (2008).Google Scholar
(13) Tsang, S. W. So, S. K. and Xu, J. B. J. Appl. Phys. 99, 013706 (2006).Google Scholar
(14) Naka, S. Okada, H. Onnagawa, H. Yamaguchi, Y. and Tsutsui, T. Synth. Met. 111-112, 331 (2000).Google Scholar
(15) Fong, H. H. So, S. K. Sham, W. Y. Lo, C. F. Wu, Y. S. and Chen, C. H. Chem. Phys. Lett. 298, 119 (2004).Google Scholar
(16) Tse, S. C. Fong, H. H. and So, S. K. J. Appl. Phys. 94, 2033 (2003).Google Scholar
(17) Xu, W. Khizar-ul-Haq, Bai, Y. Jiang, X. Y. and Zhang, Z. L. Solid State Communications 146, 311 (2008).Google Scholar
(18) Chu, T. Y. and Song, O. K. Appl. Phys. Lett. 90, 203512 (2007).Google Scholar
(19) Weiβ, O. J., Krause, R. K. and Hunze, A. J. Appl. Phys. 103, 043709 (2008).Google Scholar