Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T09:13:09.882Z Has data issue: false hasContentIssue false

Formation of Insulating Layers in GaAs-Aigaas Heterostructures

Published online by Cambridge University Press:  25 February 2011

W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974
A. E. Von Neida
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974
Get access

Abstract

We describe two methods for producing thermally stable high resistivity layers in GaAs-AlGaAs heterostructures. These rely on the interaction of implanted ions with dopant impurities already present in a buried layer in the heterostructure. In the first case, oxygen implanted at a concentration above that of the acceptors in p-type GaAs is shown to create thermally stable, highresistivity material only in the case of Be-doping in the GaAs. The effect is not seen for Mg-, Znor Cd-doping. Similarly there is no apparent interaction of 0 with n-type dopants (S or Si). The Be-O complex in p-type GaAs is a deep donor, creating material whose sheet resistivity shows a thermal activation energy of 0.59 eV. In the second case oxygen implantation into n+ AlGaAs, followed by annealing above 600°C, creates a deep acceptor level that compensates the shallow donors in the material. Temperature dependent Hall measurements show the resistivity of the compensated AlGaAs has a thermal activation energy of 0.49 eV, in contrast to a value of 0.79 eV for non-induced damage compensation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Short, K. T. and Pearton, S. J., J. Electrochem. Soc. 135, 2835 (1988).CrossRefGoogle Scholar
[2] Neida, A. E. Von, Pearton, S. J., Hobson, W. S. and Abernathy, C. R., Appl. Phys. Lett., April 17 (1989).Google Scholar
[3] Pearton, S. J., lannuzzi, M. P., Reynolds, C. L. Jr, and Peticolas, L., Appl. Phys. Lett. 52, 395 (1988).Google Scholar
[4] Wallis, R. H., Inst. Phys. Conf. Ser. 56, 73 (1981).Google Scholar
[5] Henry, C. H., Dean, D. J. and Cuthbert, J. D., Phys. Rev. B166, 754 (1968).Google Scholar
[6] Morgan, T. N., Welber, B. and Bargava, R. N., Phys. Rev. B166, 751 (1968).CrossRefGoogle Scholar
[7] Humer-Hager, T. and Zwicknagel, P., Appl. Phys. Lett. 52, 63 (1988).Google Scholar