Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:05:09.484Z Has data issue: false hasContentIssue false

Formation of Elemental Distribution in Glass Using Thermal Accumulation with Femtosecond Laser Irradiation

Published online by Cambridge University Press:  31 January 2011

Masahiro Shimizu
Affiliation:
Kiyotaka Miura
Affiliation:
[email protected], Kyoto University, Department of Material Chemistry, Kyoto, Japan
Naomi Yasuda
Affiliation:
[email protected], Kyoto University, Department of Material Chemistry, Kyoto, Japan
Masaaki Sakakura
Affiliation:
[email protected], Kyoto University, Innovative Collaboration Center, Kyoto, Japan
Shingo Kanehira
Affiliation:
[email protected], United States
Masayuki Nishi
Affiliation:
[email protected], Kyoto University, Department of Material Chemistry, Kyoto, Japan
Yasuhiko Shimotsuma
Affiliation:
[email protected]@collon1.kuic.kyoto-u.ac.jp, Kyoto University, Innovative Collaboration Center, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan, +81-75-393-3851, +81-75-393-3861
Kazuyuki Hirao
Affiliation:
Get access

Abstract

Elemental migration inside a glass was induced space-selectively and microscopically by high-repetition femtosecond(fs) laser irradiation. The tendency of the elemental migration depended on the strength of the bond between cations and oxygen ions:strongly bonded ions like Si or Al migrated to the center of the irradiated spot, whereas weekly bonded ions such as Ca migrated to the outside. Judged from analyzed temperature distribution, this phenomenon may be due to the thermomigration(Soret effect). The refractive index distribution was modified locally by controlling elemental distribution and optical waveguide was formed in phosphate and borate glasses.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Davis, K. M. Miura, K. Sugimoto, N. and Hirao, K. Optics Letters 21, 1729 (1996).Google Scholar
2 Miura, K. Qiu, J. R. Inouye, H. Mitsuyu, T. and Hirao, K. Appl. Phys. Lett. 71, 3329 (1997).Google Scholar
3 Glezer, E. N. Milosavljevic, M. Huang, L. Finlay, R. J. Her, T. H. Callan, J. P. and Mazur, E. Optics Letters 21, 2023 (1996).Google Scholar
4 Eaton, S. M. Zhang, H. B. and Herman, P. R. Optics Express 13, 4708 (2005).Google Scholar
5 Eaton, S. M. Zhang, H. Ng, M. L. Li, J. Z. Chen, W. J. Ho, S. and Herman, P. R. Optics Express 16, 9443 (2008).Google Scholar
6 Miura, K. Qiu, J. R. Mitsuyu, T. and Hirao, K. Optics Letters 25, 408 (2000).Google Scholar
7 Yonesaki, Y. Miura, K. Araki, R. Fujita, K. and Hirao, K. J. Non-Cryst. Solids 351, 885 (2005).Google Scholar
8 Miura, K. Hirao, K. Shimotsuma, Y. Sakakura, M. and Kanehira, S. Applied Physics a-Materials Science & Processing 93, 183 (2008).Google Scholar
9 Sakakura, M. Shimizu, M. Shimotsuma, Y. Miura, K. and Hirao, K. Appl. Phys. Lett. 93, 3 (2008).Google Scholar
10 Sakakura, M. Terazima, M. Shimotsuma, Y. Miura, K. and Hirao, K. Opt. Express 15, 16800 (2007).Google Scholar
11 Appen, A.The Chemistry of Glasses”, Himiq, Leningrad (1974)Google Scholar