Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T16:31:08.175Z Has data issue: false hasContentIssue false

Formation of deuterium-related shallow donors in boron-doped diamond.

Published online by Cambridge University Press:  17 March 2011

Jacques Chevallier
Affiliation:
Laboratoire de Physique des Solides et de Cristallogénèse, UMR CNRS 8635, 1 place A.Briand, 92195 Meudon Cedex, France
Zéphirin Teukam
Affiliation:
Laboratoire de Physique des Solides et de Cristallogénèse, UMR CNRS 8635, 1 place A.Briand, 92195 Meudon Cedex, France
Cécile Saguy
Affiliation:
Physics Department and Solid State Institute, Technion, Haifa 32000-, Israel
Rafi Kalish
Affiliation:
Physics Department and Solid State Institute, Technion, Haifa 32000-, Israel
Catherine Cytermann
Affiliation:
Physics Department and Solid State Institute, Technion, Haifa 32000-, Israel
Francis Bailly
Affiliation:
Laboratoire de Physique des Solides et de Cristallogénèse, UMR CNRS 8635, 1 place A.Briand, 92195 Meudon Cedex, France
Frančois Jomard
Affiliation:
Laboratoire de Physique des Solides et de Cristallogénèse, UMR CNRS 8635, 1 place A.Briand, 92195 Meudon Cedex, France
Thierry Kociniewski
Affiliation:
Laboratoire de Physique des Solides et de Cristallogénèse, UMR CNRS 8635, 1 place A.Briand, 92195 Meudon Cedex, France
Dominique Ballutaud
Affiliation:
Laboratoire de Physique des Solides et de Cristallogénèse, UMR CNRS 8635, 1 place A.Briand, 92195 Meudon Cedex, France
Michel Barbé
Affiliation:
Laboratoire de Physique des Solides et de Cristallogénèse, UMR CNRS 8635, 1 place A.Briand, 92195 Meudon Cedex, France
James E. Butler
Affiliation:
Naval Research Laboratory, Code 6174, Washington, DC 20375, USA
CÉline Baron
Affiliation:
Laboratoire d’Etudes des Propriétés Electroniques des Solides, CNRS B.P.166, 38042 Grenoble Cedex 09, France
Alain Deneuville
Affiliation:
Laboratoire d’Etudes des Propriétés Electroniques des Solides, CNRS B.P.166, 38042 Grenoble Cedex 09, France
Get access

Abstract

It is well known that diffusion of deuterium in boron-doped diamond results in the passivation of boron acceptors with the formation of (B,D) complexes. In this work, we show that deuteration of boron-doped diamond can induce a p-type to n-type conversion under certain conditions. The n-type conductivity is governed by the ionization of shallow donors with a ionization energy of 0.34 eV. This is well below the lowest ionization energy of donors found up to now in diamond (0.6 eV for phosphorus donors). The electrical conductivity and the electron mobility can be as high as 6 S/cm and 430 cm2/Vs at 300 K. The reversibility of the effect under thermal annealing and the necessity of excess deuterium to trigger the n-type conductivity suggest that deuterium is involved in the formation of the shallow donors. The present status concerning the understanding of their origin is discussed. In addition, we have found that, contrary to previous conclusions, deuterium can diffuse in type Ib diamond. The conditions where this diffusion is observed are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Butler, J.E. and Goodwin, D.G., Properties, Growth and Applications of Diamond, eds Nazaré, M.H. and Neves, A.J., EMIS Datareviews Series n°26, 262 (2001).Google Scholar
2. Baumann, P.K. and Nemanich, R.J., J.Appl.Phys. 83, 2072 (1998).Google Scholar
3. Cui, J.B., Ristein, J., Ley, L., Phys.Rev.Lett. 81, 429 (1998).Google Scholar
4. Ristein, J., Maier, F., Riedel, M., Stammer, M., Ley, L., Diam.Rel.Mat. 10, 416 (2001).Google Scholar
5. Tsugawa, K., Kitatani, K., Noda, H., Hokazono, A., Tajima, M., Kawarada, H., Diam.Rel.Mat. 8, 927 (1999).Google Scholar
6. Goss, J.P., Jones, R., Heggie, M.I., Ewels, C.P., Briddon, P.R. and Öberg, S., Phys.Rev.B 65, 115207 (2002).Google Scholar
7. Wang, L.G. and Zunger, A., Phys.Rev.B 66, 161202(R) (2002).Google Scholar
8. Holzschuh, E., Kündig, W., Meier, P.F., Patterson, B.D., Sellschop, J.P.F., Stemmet, M.C. and Appel, H., Phys. Rev.A 25, 1272 (1982).Google Scholar
9. Holm, B., Nielsen, K.Bonde and Nielsen, B.Bech, Phys.Rev.Lett. 66, 2360 (1991).Google Scholar
10. Estreicher, S.K., Mater.Science and Engin. R14, 7-8, 319 (1995).Google Scholar
11. Chevallier, J., Theys, B., Lusson, A., Grattepain, C., Deneuville, A. and Gheeraert, E., Phys.Rev.B 58, 7966 (1998).Google Scholar
12. Zeisel, R., Nebel, C.E. and Stutzmann, M., Diam.Rel.Mat. 9, 413 (2000).Google Scholar
13. Saguy, C., Cytermann, C., Fizgeer, B., Richter, V., Avigal, Y., Moriya, N., Kalish, R., Mathieu, B. and Deneuville, A., Diam.Rel.Mat. 12, 623 (2003).Google Scholar
14. Mehandru, S.P. and Anderson, A.B., J.Mat.Res. 9, 383 (1994).Google Scholar
15. Goss, J.P., Jones, R., Heggie, M.I., Ewels, C.P., Briddon, P.R. and Öberg, S., Phys.Stat.Sol. (a) 186, 263 (2001).Google Scholar
16. Langpape, Ch., Fabian, S., Klatt, Ch. and kalbitzer, S., Appl.Phys.A 64, 207 (1997).Google Scholar
17. Chevallier, J., in Thin Film Diamond, eds Nebel, C. and Ristein, J., Semiconductors and Semimetals, vol.77 (Academic Press, San Diego, 2004) (in press).Google Scholar
18. Teukam, Z., Ballutaud, D., Jomard, F., Chevallier, J., Bernard, M., Deneuville, A., Diam.Rel.Mat. 12, 647 (2003).Google Scholar
19. Herrero, C.P., Stutzmann, M., Breitschwerdt, A. and Santos, P.V., Phys.Rev.B 41, 1054 1990).Google Scholar
20. Herring, C. and Johnson, N.M., in Hydrogen in Semiconductors, Semiconductors and Semimetals, vol.34 (Academic Press, San Diego, 1991) p.225.Google Scholar
21. Chevallier, J., Jomard, F., Teukam, Z., Koizumi, S., Kanda, H., Sato, Y., Deneuville, A., Bernard, M., Diam.Rel.Mat. 11, 1566 (2002).Google Scholar
22. Koizumi, S., Teraji, T. and Kanda, H., Diam.Rel.Mat. 9, 935 (2000).Google Scholar
23. Gheeraert, E., Koizumi, S., Teraji, T., Kanda, H., Nesladek, M., Diam.Rel.Mat. 9, 948 (2000).Google Scholar
24. Teukam, Z., Chevallier, J., Saguy, C., Kalish, R., Ballutaud, D., Barbé, M., Jomard, F., Tromson-Carli, A., Cytermann, C., Butler, J.E., Bernard, M., Baron, C. and Deneuville, A., Nature Materials 2, 482 (2003).Google Scholar
25. Blakemore, J.S. in Solid State Physics, 2nd edition, Cambridge University Press 1985, p.320.Google Scholar
26. Ballutaud, D., Jomard, F., Duigou, J.Le, Theys, B., Chevallier, J., Deneuville, A. and Pruvost, F., Diam.Rel.Mat. 9, 1171 (2000).Google Scholar
27. Chevallier, J., Lusson, A., Ballutaud, D., Theys, B., Chevallier, J., Deneuville, A., Bernard, M., Gheeraert, E. and Bustarret, E., Diam.Rel.Mat. 10, 399 (2001).Google Scholar
28. Saguy, C., Kalish, R., Cytermann, C., Teukam, Z., Chevallier, J., Jomard, F., Carli, A.Tromson, Butler, J.E., Baron, C. and Deneuville, A., Diam.Rel.Mat. (2004) in press.Google Scholar
29. Goss, J.P., Briddon, P.R., Sque, S.J. and Jones, R., Phys.Rev.B (2004) in press.Google Scholar
30. Dai, Y., Dai, D., Liu, D., Han, S. and Huang, B., Appl.Phys.Lett. 84, 1895 (2004).Google Scholar
31. Zhou, X., Watkins, G.D., Rutledge, K.M.McNamara, Messmer, R.P. and Chawla, S., Phys.Rev.B 54, 7881 (1996).Google Scholar
32. Kiflawi, I., Mayer, A.E., Spear, P.M., Wyk, J.A. van and Woods, G.S., Phil.Mag.B 69, 1141 (1994).Google Scholar