Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:24:56.677Z Has data issue: false hasContentIssue false

Formation of Counter Doped Shallow Junctions by Boron and Antimony Implantation and Codiffusion in Silicon

Published online by Cambridge University Press:  15 February 2011

S. Solmi
Affiliation:
CNR-LAMEL Institute, Via Gobetti 101–40129, Bologna, Italy
R. Canteri
Affiliation:
Centro Materiali e Biofisica Medica (CMBM), 38050, Povo (TN), Italy
Get access

Abstract

Very shallow p+/n junctions (lower than 60 nm) have been fabricated by implanting Sb and subsequently BF2, at a higher dose, in a n-type Si substrate. The preamorphisation with Sb avoids the B channeling and increases the n-type doping in the junction region, thus confining the depth of the p layer. Furthermore, both the transient enhanced diffusion, being the B implanted in a preamorphized layer, and the standard diffusion, due to the pairing between donors and acceptors, are strongly reduced. This procedure allows us to obtain very shallow junctions even after annealings with relatively high thermal budget, like 800 C/8h, or 900 C/lh, or 950 C/15min or 1000 C/60s. Dopant diffusion is strongly affected by the direct donor-acceptor interaction. Good agreement between experimental and simulation results can only be obtained using a simulation code which takes into account the formation of neutral, near immobile, Sb-B pairs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ganin, E., Davari, B., Harame, D., Scilla, G., and Sai-Halasz, G. A., Appl. Phys. Lett. 54, 2127 (1989)Google Scholar
2. Taur, Y., Cohen, S., Wind, S., Lii, T., Hsu, C., Quinlan, D., Ciang, C., Buchanan, D., Agnello, P., Mii, Y., Reeves, C., Acovic, A., and Kesan, V., IEDM Tech. Dig. (1992), p. 901 Google Scholar
3. Shahidi, G. G., Warnok, J., Acovic, A., Agnello, P., Blair, C., Bucelot, T., Burghartz, A., Crabbe, E., Cressler, J., Coane, P., Comfort, J., Davari, B., Fisher, s., Ganin, E., Gittlemann, S., Keller, J., Jenkins, K., Klaus, D., Kiewtniak, K., Lii, T., McFarland, P. A., Ning, T., Polcari, M., Subbana, S., Sun, J. Y., Sunderland, D., Warren, A. C., and Wong, C.,, Tech. Dig. Symp. VLSI Tech., (1993), p. 93 Google Scholar
4. Fair, R.B., Manda, M.L. and Wortman, J.J., J. Mater. Res. 1, 705 (1986)Google Scholar
5. Margesin, B., Canteri, R., Solmi, S., Armigliato, A. and Baruffaldi, F., J. Mater. Res. 6, 2353 (1991)Google Scholar
6. Wittel, F. and Dunham, S., Appl. Phys. Lett. 66, 1415 (1995)Google Scholar
7. Solmi, S., Valmorri, S. and Canteri, R., J. Appl. Phys. 77, 2400 (1995)Google Scholar
8. Cowern, N. E. B., Appl. Phys. Lett. 54, 703 (1989)Google Scholar
9. Solmi, S. and Valmorri, S., Mat. Res. Soc. Symp. Proc. 369, 65 (1995)Google Scholar
10. Solmi, S., Landi, E. and Baruffaldi, F., J. Appl. Phys., 68, 3250 (1990)Google Scholar
11. Masetti, G., Severi, M. and Solmi, S., IEEE Trans, on El. Dev., ED- 30, 764 (1983)Google Scholar
12. Fair, R.B. in “Silicon Integrated Circuits”, edit by Kahug, D. (Academic, New York, 1981), p. 1.Google Scholar