Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:43:23.083Z Has data issue: false hasContentIssue false

Formation of Cobalt Silicides in Arsenic Implanted Cobalt on Silicon System

Published online by Cambridge University Press:  25 February 2011

A.R. Sitaram
Affiliation:
now with APRDL, Motorola Inc., 3501, Ed Bluestein Boulevard, Austin, TX 78721
S.P. Murarka
Affiliation:
Materials Engineering Department/CIE, Rensselaer Polytechnic Institute, Troy, NY 12180
Get access

Abstract

The importance of self aligned cobalt disilicide technology for gate and interconnection, and contact metallization cannot be overemphasized. Simultaneously, the concept of forming shallow junctions by using the metal or silicide layer as a dopant source is gaining prominence. In this work, we will present and discuss the results of the effect of arsenic, implanted into cobalt films on silicon, on the Co-Si reaction. Arsenic redistribution during the reaction, both during furnace annealing and RTA, and the effect of ion implantation and dose and energy will also be included.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murarka, S.P. “Silicides For VLSI Applications”, Academic (1983).CrossRefGoogle Scholar
2. Murarka, S.P., J.Vac. Sci. Technol. B, 4(6), 1325 (1986).CrossRefGoogle Scholar
3. Lau, C.K., Electrochem. Soc. Dig. Extended Abs., 831, 569 (1983)Google Scholar
Alperin, M.E., Holloway, T.C., Haken, R.A., Gosmeyer, C.D., Karnaugh, R.V., and Parmantie, W.D., J. Solid State Circuits, SC–20, 61 (1985), and references therein.CrossRefGoogle Scholar
4. Murarka, S.P. and Williams, D.S., J. Vac. Sci. Technol. B, 5(6), 1674 (1987).CrossRefGoogle Scholar
5. Van den Hove, L., Maex, K., Hobbs, L., Lippens, P., de Keersmaecker, R. F., Probst, V., and Schaber, H., Appl. Surf. Sci., 38, 430 (1989).CrossRefGoogle Scholar
6. Maex, K., Ghosh, G., Delaey, L., Probst, V., Lippens, P., Van den Hove, L., and de Keersmaecker, R.F., J. Mater. Res. Soc., 4(5), 1209 (1989).Google Scholar
7. Liu, R., Baiocchi, F.A., Heimbrook, L.A., Kovalchik, J., Malm, D.L., Williams, D.S., and Lynch, W.T., in “ULSI Science and Technology 1987”, eds. Broydo, S. and Osburn, C.M., The Electrochemical Society, Pennington, NJ (1987)Google Scholar
Shone, F.C., Saraswat, K.C., and Plummer, J.D., IEDM Tech. Dig., 407 (1985).Google Scholar
8. Kern, W., Solid State Technology, 15, 34 (1972).Google Scholar
9. Biersack, J.P. and Hoggmark, L.P., Nucl. Instr. Methods, 174, 257 (1980).Google Scholar
10. Delfino, M., Morgan, A.E., Maillot, P., and Broadbent, E.K., J. Appl. Phys., 64(2), 607 (1988).CrossRefGoogle Scholar
11. Appelbaum, A., Knoell, R.V., and Murarka, S.P., J. Appl. Phys., 57, 1880 (1985).CrossRefGoogle Scholar
12. Sitaram, A.R., Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY (1990).Google Scholar
13. Shorimachi, Y., Ishiwara, H., Yamamoto, H., and Furukawa, S., Jap. J. Appl. Phys., 21(5), 752 (1982).CrossRefGoogle Scholar
14. Sitaram, A.R. and Murarka, S.P., paper presented at the 174th Meeting of The Electrochemical Society, Chicago, October 1988.Google Scholar
15. Thomas, O., Gas, P., d’Huerle, F.M., LeGoues, F.K., Michel, A., and Scilla, G., J. Vac. Sci. Technol. A, 6(3), 1736 (1988).CrossRefGoogle Scholar