Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T04:22:56.802Z Has data issue: false hasContentIssue false

Formation of Buried Oxide in Silicon by High-Dose Oxygen Implantation, and Application of this Technology to CMOS Devices

Published online by Cambridge University Press:  22 February 2011

K. Izumi
Affiliation:
Atsugi Electrical Communication Laboratory, N.T.T., Atsugi-shi, Kanagawa 243–01, Japan
Y. Omura
Affiliation:
Atsugi Electrical Communication Laboratory, N.T.T., Atsugi-shi, Kanagawa 243–01, Japan
S. Nakashima
Affiliation:
Atsugi Electrical Communication Laboratory, N.T.T., Atsugi-shi, Kanagawa 243–01, Japan
Get access

Abstract

SIMOX (Separation by Implanted Oxygen) technology has been developed for realization of oxygen-ion implanted SOI. The distribution of implanted oxygen was analyzed by Auger electron spectroscopy and Rutherford backscattering spectroscopy. The properties of the silicon oxide formed by oxygenion implantation were investigated by infrared spectra, capacitance-voltage characteristics, dielectric strength, and dielectric constants. The crystallinity of the top layer silicon and of the epitaxially-grown silicon layer was deter mined by electron-beam diffraction. An electric-field-shielding effect was observed in the polycrystalline silicon region which was formed between the top layer silicon and the buried oxide. High-speed digital and high-voltage analogue CMOS LSIs, a 1kb CMOS RAM and a BSH LSI, were successfully fabricated using SIMOX technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Watanabe, M. and Tooi, A., Japan. J. Appl. Phys. 5, 737 (1966).Google Scholar
2.Gusev, V.M., Guseva, M.I., Titov, V.V., Tsyplenkov, V.S., Baranova, E.K., and Steltsov, L.P., Radio Eng. & Electron. Phys. 16, 1357 (1971).Google Scholar
3.Dylewski, J. and Joshi, M.C., Thin Solid Films 37, 241 (1976).Google Scholar
4.Badawi, M.H. and Anand, K.V., J. Phys. D 10, 1931 (1977).Google Scholar
5.Izumi, K., Doken, M., and Ariyoshi, H., Electron. Lett. 14, 593 (1978).Google Scholar
6.Izumi, K., Omura, Y., Ishikawa, M., and Sano, E., VLSI Symposium Digest of Tech. papers, Oiso, p.10(1982).Google Scholar
7.Lam, H.W., Pinizzotto, R.F., Yuan, H.T., and Bellavance, D.W., Electron. Lett. 17, 356 (1981).Google Scholar
8.Izumi, K., Doken, M., and Ariyoshi, H., Proc. llth Conf.(1979 International) Solid State Devices,TokyoGoogle Scholar
8a.Japan. J. Appl. Phys. 19, Suppl.19–1, 151 (1980).Google Scholar
9.Pinizzotto, R.F., Vaandrager, B.L., Matteson, S., Lam, H.W., and Malhi, S.D.S., IEEE Trans. Nuclear Science 30, 1718 (1983).Google Scholar
10.Izumi, K., Omura, Y., and Sakai, T., J. Electron. Mater. 12, 845 (1983).Google Scholar
11.Irita, Y. and Kajiyama, K., Japan. J. Appl. Phys. 20, L909 (1981).Google Scholar
12.Hamasaki, M., Adachi, T., Wakayama, S., and Kikuchi, M., J. Appl. Phys. 49, 3987 (1978).Google Scholar
13.Nakashima, S., Akiya, M., and Kato, K., Electron. Lett. 19, 569 (1983).Google Scholar
14.Kawarada, K., Hayashi, T., Inabe, Y., and Imagawa, H., ISSCC Digest of Tech. papers, p.202 (1982).Google Scholar