Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:29:41.673Z Has data issue: false hasContentIssue false

Formation of Buried Oxide in Mev Oxygen Implanted Silicon

Published online by Cambridge University Press:  28 February 2011

C.W. Nieh
Affiliation:
Materials Research Group California Institute of Technology, Pasadena, CA 91125
F. Xiong
Affiliation:
Materials Research Group California Institute of Technology, Pasadena, CA 91125
C. C. Ahn
Affiliation:
Materials Research Group California Institute of Technology, Pasadena, CA 91125
Z. Zhou
Affiliation:
Materials Research Group California Institute of Technology, Pasadena, CA 91125
D. N. Jamieson
Affiliation:
Materials Research Group California Institute of Technology, Pasadena, CA 91125
T. Vreeland Jr.
Affiliation:
Materials Research Group California Institute of Technology, Pasadena, CA 91125
B. Fultz
Affiliation:
Materials Research Group California Institute of Technology, Pasadena, CA 91125
T. A. Tombrello
Affiliation:
Materials Research Group California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

We have studied the formation of buried oxide in MeV oxygen implanted Si. A continuous oxide layer is formed in the samples implanted with 2x1018/cm2 oxygen and annealed at 1300° C. The microstructures are studied by cross-sectional transmission electron microscopy and high resolution electron microscopy. Chemical information was obtained by electron energy loss spectroscopy. The effects of implantation temperature are studied. Implantation at a low substrate temperature leads to a well-defined buried SiO2 layer, inhibits the formation of oxide precipitates in the silicon, and reduces silicon inclusions in the SiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Celler, G. K., Solid State Technology/March, 93 (1987)Google Scholar
2 Stoemenos, J., Margail, J., Jausscud, C., Dupuy, M., and Bruel, M., Appl. Phys. Lett. 48, 1470 (1986)CrossRefGoogle Scholar
3 White, A. E., Short, K. T., Batstone, J. L., Jacobson, D. C., Poate, J. M., and West, K. W., Appl. Phys. Lett. 50, 19 (1986)CrossRefGoogle Scholar
4 Celler, G. K., Hemment, P. L. F., West, W. K., and Gibson, J. M., Appl. Phys. Lett. 48, 532 (1986)CrossRefGoogle Scholar
5 Tuppen, C. G., Taylor, M. R., Hemment, P. L. F., and Arrowsmith, R. D., Appl. Phys. Lett. 45, 57 (1984)CrossRefGoogle Scholar
6 White, A. E., Short, K. T., Pfeiffer, L. N., West, K. W., and Batstone, J. L., Mat. Res. Soc. Symp. Proc. Vol.74, 585 (1987)CrossRefGoogle Scholar
7 Elghor, M. K., Pennycook, S. J., Sjoreen, T. P., and Narayan, J., Mat. Res. Soc. Symp. Proc. Vol.74, 591, (1987)CrossRefGoogle Scholar
8 Batstone, J. L., White, A. E., Short, K. T., Gibson, J. M., and Jacobson, D. C., Mat. Res. Soc. Symp. Proc. Vol.74, 597, 1987.CrossRefGoogle Scholar
9 Tafto, J. and Zhu, J., Ultramicroscopy, 9, 349354 (1982)CrossRefGoogle Scholar
10 Ahn, C. C., and Krivarek, O. L., EELS Atlas, Center for Solid State Science, Arizona State University, Tempe AZ 85287 (1983)Google Scholar
11 Kennedy, E. F., Csepregi, L., Mayer, J. M., and Sigmon, T. W., J. Appl. Phys. 48, 4241 (1977)CrossRefGoogle Scholar