Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T06:34:35.388Z Has data issue: false hasContentIssue false

Formation of boron carbonitride nanotubes from in situ grown carbon nanotubes for space applications

Published online by Cambridge University Press:  01 February 2011

F. Piazza
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PO Box 23343, Puerto Rico 00931
J. E. Nocua
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PO Box 23343, Puerto Rico 00931
A. Hidalgo
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PO Box 23343, Puerto Rico 00931
J. De Jesús
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PO Box 23343, Puerto Rico 00931
R. Velázquez
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PO Box 23343, Puerto Rico 00931
G. Morell
Affiliation:
Department of Physical Sciences, University of Puerto Rico, San Juan, PO Box 23323, Puerto Rico 00931
Get access

Abstract

Boron carbonitride nanotubes (BCNNTs) were grown with high yield by arc discharge without catalyst particles or pre-grown template nanostructures. Two types of nanotubes (NTs) were formed: thin NTs with diameters of 10–15 nm and thick NTs with diameters of 25–50 nm, all multiwall. Transmission electron microscopy, electron energy loss spectroscopy, and Raman spectroscopy analyses indicate that the thin NTs are carbon NTs (CNTs) while the thick NTs are BCNNTs wrapped around CNTs. The growth kinetic appears to be faster for CNTs than for BCNNTs. Through the concerted substitution of B and N for C in the in situ grown CNTs, template growth of BCNNTs follows the CNTs growth without causing topological changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., and Zettl, A., Science 269, 966 (1995).Google Scholar
2. Rubio, A., Corkill, J.L., and Cohen, M.L., Phys. Rev. B 49, 5081 (1994).Google Scholar
3. Ng, Man-Fai, and Zhang, R.Q., Phys. Rev. B 69, 115417 (2004).Google Scholar
4. Fuentes, G.G., Borowiak-Palen, E., Pichler, T., Liu, X., Graff, A., Behr, G., Kalenczuk, R.J., Knupfer, M., and Fink, J., Phys. Rev. B 67, 035429 (2003).Google Scholar
5. Han, Wei-Qiang, Mickelson, W., Cumings, J., and Zettl, A., Appl Phys Lett 81, 1110 (2002).Google Scholar
6. Zhi, C.Y., Guo, J.D., Bai, X.D., and Wang, E.G., J. Appl. Phys. 91, 5325 (2002).Google Scholar
7. Srivastava, D., Menon, M., and Cho, K., Phys. Rev. B 63, 195413 (2001).Google Scholar
8. Laude, T., Matsui, Y., Marraud, A., and Jouffrey, B., Appl. Phys. Lett. 76, 22 (2000).Google Scholar
9. Yu, J., and Wang, E.G., Applied Physics Letters 74, 2948 (1999).Google Scholar
10. Zhi, C.Y., Guo, J.D., Bai, X. D., and Wang, E.G., J. Phys. Lett. 91, 5325 (2002).Google Scholar
11. Bai, X.D., Guo, J.D., Yu, J., Wang, E.G., Yuan, J., and Zhou, W., Appl. Phys. Lett. 76, 2624 (2000).Google Scholar
12. Chopra, N.G., and Zettl, A., Solid State Commun. 105, 297 (1995).Google Scholar
13. Dumitrica, T., Bettinger, H.F., Scuseria, G.E., and Yakobson, B.I., Phys. Rev. B 68, 085412 (2003).Google Scholar
14. Ebbesen, T.W., and Ajayan, P.M., Nature 358, 220 (1992).Google Scholar
15. Loiseau, A., Willaime, F., Demoncy, N., Hug, G., and Pascard, H., Phys. Rev. Lett. 76, 4737 (1996).Google Scholar
16. Cumings, J., and Zettl, A., Chem. Phys. Lett. 316, 211 (2000).Google Scholar
17. Han, W., Bando, Y., Kurashima, K., and Sato, T., Appl. Phys. Lett. 73, 3085 (1998).Google Scholar
18. Golberg, D., Bando, Y., Han, W., Kurashima, K., and Sato, T., Chem. Phys. Lett. 308, 337 (1999).Google Scholar
19. Lowell, C.E., J. Am. Ceram. Soc. 50, 142 (1967).Google Scholar
20. Gago, R., Jiménez, I., Albella, J.M., and Terminello, L.J., Appl. Phys. Lett. 78, 3430 (2001).Google Scholar
21. Weng-Sieh, Z., Cherrey, K., Chopra, N.G., Blase, X., Miyamoto, Y., Rubio, A., Cohen, M.L., Louie, S.G., Zettl, A., and Gronsky, R., Phys. Rev. B 51, 11229 (1995).Google Scholar
22. Stephan, O., Ajayan, P.M., Colliex, C., Redlich, Ph., Lambert, J.M., Bernier, P., and Lefin, P., Science 266, 1683 (1994).Google Scholar
23. Bae, S., Seo, H.W., Park, J., Choi, Y.S., Park, J.C., and Lee, S.Y., Chem. Phys. Lett. 374, 534 (2003).Google Scholar
24. Tunistra, F., and Koenig, J.L., J. Chem. Phys. 5, 1126 (1970).Google Scholar
25. Grick, R., Perry, C.H., and Rupprecht, G., Phys. Rev. 146, 543 (1966).Google Scholar
26. Lee, Y.T., Park, J., Choi, Y.S., Lyu, H., and Lee, H.J., J. Phys. Chem. B 106, 7614 (2002).Google Scholar
27. Bae, S., Seo, H.W., Park, J., Choi, Y.S., Park, J.C., and Lee, S.Y., Chem. Phys. Lett. 374, 534 (2003).Google Scholar
28. Zhi, C.Y., Bai, X.D., and Wang, E.G., J. Nanosci. Nanotech. 4, 35 (2004); Appl. Phys. Lett. 80, 3590 (2002).Google Scholar
29. Endo, M., Kim, C., Karaki, T., Tamaki, T., Nishimura, Y., Matthews, M.J., Brown, S.D.M., and Dresselhaus, M.S., Phys. Rev. B 58, 8991 (1998).Google Scholar
30. Golberg, D., Bando, Y., Kurashima, K., and Sato, T., Chem. Phys. Lett. 323, 185 (2000).Google Scholar
31. Golberg, D., Bando, Y., Eremets, M., Takemura, K., Kurashima, K., and Yusa, H., Appl. Phys. Lett. 69, 2045 (1996).Google Scholar
32. Louri, R., Jones, C.R., Barlett, B.M., Gibbons, P.C., Ruo, R.S., and Buhro, W.E., Chem. Mater. 12, 1808 (2000).Google Scholar
33. Oberlin, A., Endo, M., and Kyoama, T., J. Cryst. Growth. 32, 335 (1976).Google Scholar
34. Louchev, O., Appl. Phys. Lett. 71, 3522 (1997).Google Scholar