Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T11:06:57.775Z Has data issue: false hasContentIssue false

Formation of a single In(Ga)As/GaAs quantum dot embedded in a site-controlled GaAs nanowire by metalorganic chemical vapor deposition for application to single photon sources

Published online by Cambridge University Press:  21 May 2012

J. Tatebayashi
Affiliation:
NanoQUINE, Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, JAPAN
Y. Ota
Affiliation:
NanoQUINE, Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, JAPAN
D. Karunathillake
Affiliation:
NanoQUINE, Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, JAPAN Institute of Industrial Science, Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, JAPAN
S. Ishida
Affiliation:
NanoQUINE, Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, JAPAN Institute of Industrial Science, Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, JAPAN
M. Nishioka
Affiliation:
NanoQUINE, Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, JAPAN Institute of Industrial Science, Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, JAPAN
S. Iwamoto
Affiliation:
NanoQUINE, Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, JAPAN Institute of Industrial Science, Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, JAPAN
Y. Arakawa
Affiliation:
NanoQUINE, Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, JAPAN Institute of Industrial Science, Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, JAPAN
Get access

Abstract

We report the formation and optical properties of site-controlled InAs/GaAs quantum dots (QDs) embedded in GaAs nanowires (NWs) by selective metalorganic chemical vapor deposition for application to single photon sources. InAs/GaAs QD-in-NWs with various InAs thicknesses are realized on patterned GaAs(111)B substrates in the form of InAs/GaAs heterostructures and identified by structural analyses using scanning transmission electron microscopy and photoluminescence characterization. Sharp excitonic emission peaks at 10 K from single QD-in-NWs with the narrowest exciton linewidth of 87 μeV are observed. Light emission from the single QD-in-NW shows photon antibunching which evidences single photon emission from high-quality QD-in-NWs.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, 939 (1982).CrossRefGoogle Scholar
Babinec, T. M., Hausmann, B. J. M., Khan, M., Zhang, Y., Maze, J. R., Hemmer, P. R. and Lončar, M., Nature Nanotechnology 5 (2010) 195.CrossRefGoogle Scholar
Claudon, J., Bleuse, J., Malik, N. S., Bazin, M., Jaffrennou, P., Gregersen, N., Sauvan, C., Lalanne, P. and Gérard, J. -M., Nature Photon. 4 (2010) 174.CrossRefGoogle Scholar
Singh, R. and Bester, G., Phys. Rev. Lett. 103, (2009) 063601.CrossRefGoogle Scholar
Schliwa, A., Winkelnkemper, M., Lochmann, A., Stock, E., and Bimberg, D., Phys. Rev. B 80, (2009) 161307.CrossRefGoogle Scholar
Ertekin, E., Greaney, P. A., Chrzan, D. C., and Sands, T. D., J. Appl. Phys. 97, 114325 (2005).CrossRefGoogle Scholar
Glas, F., Phys. Rev. B, 74, 121302 (2006).CrossRefGoogle Scholar
Nozawa, T. and Arakawa, Y., Appl. Phys. Lett. 98, 171108 (2011).CrossRefGoogle Scholar
Wagner, R. S., and Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
Motohisa, J., Noborisaka, J., Takeda, J., Inari, M., and Fukui, T., J. Cryst. Growth 272, 180 (2004).CrossRefGoogle Scholar
Panev, N., Persson, A. I., Sköld, N., and Samuelson, L., Appl. Phys. Lett. 83, 2238 (2003).CrossRefGoogle Scholar
Borgström, M. T., Zwiller, V., Müller, E., and Imamoglu, A., Nano Lett. 5, 1439 (2005).CrossRefGoogle Scholar
Sanada, H., Gotoh, H., Tateno, K. and Nakano, H., Jpn. J. of Appl. Phys. 46, 2578 (2007).CrossRefGoogle Scholar
Dorenbos, S. N., Sasakura, H., van Kouwen, M. P., Akopian, N., Adachi, S., Namekata, N., Jo, M., Motohisa, J., Kobayashi, Y., Tomioka, K., Fukui, T., Inoue, S., Kumano, H., Natarajan, C. M., Hadfield, R. H., Zijlstra, T., Klapwijk, T. M., Zwiller, V., and Suemune, I., Appl. Phys. Lett. 97, 171106 (2010).CrossRefGoogle Scholar
Reimer, M. E., Bulgarini, G., Akopian, N., Hocevar, M., Bavinck, M. B., Verheijen, M. A., Bakkers, E. P. A. M., Kouwenhoven, L. P. and Zwiller, V., Nature Comms, 3:739 (2012).CrossRefGoogle Scholar
Renard, J., Songmuang, R., Bougerol, C., Daudin, B. and Gayral, B., Nano Lett. 8, 2092 (2008).CrossRefGoogle Scholar
Paladugu, M., Zou, J., Guo, Y.-N., Zhang, X., Kim, Y., Joyce, H. J., Gao, Q., Tan, H. H. and Jagadish, C., Appl. Phys. Lett. 93, 101911 (2008).CrossRefGoogle Scholar
Heiß, M., Gustafsson, A., Conesa-Boj, S., Peiró, F., Mo-rante, J. R., Abstreiter, G., Arbiol, J., Samuelson, L. and Morral, A. F., Nanotechnology 20, 075603 (2009).CrossRefGoogle Scholar
Shapiro, J. N., Lin, A., Wong, P. S., Scofield, A. C., Tu, C., Senanayake, P. N., Mariani, G., Liang, B. L. and Huffaker, D. L., Appl. Phys. Lett. 97, 243102 (2010).CrossRefGoogle Scholar
Tatebayashi, J., Nishioka, M., and Arakawa, Y., Appl. Phys. Lett. 78, 3469 (2001).CrossRefGoogle Scholar