Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T12:29:31.339Z Has data issue: false hasContentIssue false

Formation of a miscibility gap in laser-crystallized poly-SiGe thin films

Published online by Cambridge University Press:  01 February 2011

M. Weizman
Affiliation:
Hahn-Meitner-Institut Berlin, Kekuléstr. 5, 12489 Berlin,Germany
I. Sieber
Affiliation:
Hahn-Meitner-Institut Berlin, Kekuléstr. 5, 12489 Berlin,Germany
B. Yan
Affiliation:
United Solar Systems Corp. 1100 West Maple Road Troy, MI 48084, USA
Get access

Abstract

Laser-crystallized polycrystalline silicon-germanium (poly-SiGe) thin films on glass substrates were characterized with energy dispersive X-ray and Raman spectroscopy. In the course of the crystallization strong lateral segregation occurs for laser-crystallized poly-Si1-xGex with 0.33 < x < 0.7, causing the local Ge content to differ by as much as 40 % from the average value. The segregation manifests itself in the appearance of well-resolved peaks in the Raman phonon modes. This mode splitting in the Raman spectra is interpreted as the formation of well defined alloy phases with a miscibility gap in between.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Stör, H. and Klemm, W., Z. anorg. Chem. 241, 305 (1939).10.1002/zaac.19392410401Google Scholar
2 Yamashita, O. and Sadatomi, N., J. Appl. Phys. 88, 245 (2000).10.1063/1.373648Google Scholar
3 Nagai, H., Nakata, Y., Minagawa, H., Kamada, K., Tsurue, T., Sasamori, M., and Okutani, T., Jpn. J. Appl. Phys. 41, 749 (2002).10.1143/JJAP.41.749Google Scholar
4 Brunco, D. P., Thompson, M. O., Hoglund, D. E., Aziz, M. J., and Gossmann, H.-J., J. Appl. Phys. 78, 1575 (1995).10.1063/1.360251Google Scholar
5 Reitano, R., Smith, P. M., and Aziz, M. J., J. Appl. Phys. 76, 1518 (1994).10.1063/1.357728Google Scholar
6 Lombardo, S., Kramer, K., Thompson, M. O., and Smith, D. R., Appl. Phys. Lett. 59, 3455 (1991).10.1063/1.105676Google Scholar
7 Aziz, M. J. and Kaplan, J., Acta Metall. 36, 2335 (1988).10.1016/0001-6160(88)90333-1Google Scholar
8 Jackson, K. A., Glimer, G. H., and Leamy, H. J., in Laser and Electron Beam Processing of Materials, edited by White, C. W. and Peercy, P. S. (Academic, New York, 1980), p. 104.10.1016/B978-0-12-746850-1.50017-7Google Scholar
9 Jackson, K. A., in Surface Modification and Alloying by Laser, Ion and Electron Beams, edited by Poate, J. M., Foti, G. and Jacobson, (Plenum, New York, 1983), p. 51.10.1007/978-1-4613-3733-1_3Google Scholar
10 Lengsfeld, P., Nickel, N. H., and Fuhs, W., Appl. Phys. Lett. 76, 1680 (2000).10.1063/1.126134Google Scholar
11 Mei, P., Boyce, J. B., Hack, M., Lujan, R., Johnson, R. I., Anderson, G. B., and Fork, D. K., Appl. Phys. Lett. 64, 1132 (1994).10.1063/1.110829Google Scholar
12 Brya, W. J., Solid State Commun. 12, 253 (1973).10.1016/0038-1098(73)90692-3Google Scholar
13 Renucci, M. A., Renucci, J. B., and Cardona, M., in Light Scattering in Solids, edited by Balkanski, M. (Flammarion, Paris, 1971), p. 326.Google Scholar
14 Alonso, M. I. and Winer, K., Phys. Rev. B 39, 10056 (1989).10.1103/PhysRevB.39.10056Google Scholar
15 Eisele, C., Dissertation, Technische Universität München (2002).Google Scholar
16 Lengsfeld, P., Nickel, N. H., Genzel, C., and Fuhs, W., J. Appl. Phys. 91, 9128 (2002).10.1063/1.1476083Google Scholar
17 Walther, T., Humphreys, C. J., and Cullis, A. G., Appl. Phys. Lett. 71, 809 (1997).10.1063/1.119653Google Scholar
18 Losert, W., Shi, B. Q., and Cummins, H. Z., Proc. Natl. Acad. Sci. USA 95, 439 (1998).10.1073/pnas.95.2.439Google Scholar