Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:47:57.618Z Has data issue: false hasContentIssue false

Formation and Transistor Behavior of Carbon Nanotube T-junctions

Published online by Cambridge University Press:  15 February 2011

Po-Wen Chiu
Affiliation:
Max-Planck Institute for solid state research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Jean-Michel Benoit
Affiliation:
Max-Planck Institute for solid state research, Heisenbergstrasse 1, 70569 Stuttgart, Germany Laboratoire de Physique Cristalline IMN, Université de Nantes, France
Ralf Graupner
Affiliation:
Institut für Technische Physik, Universität Erlangen, Erwin-Rommel-str. 1, 91058 Erlangen, Germany
Ursula Dettlaff
Affiliation:
Max-Planck Institute for solid state research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Siegmar Roth
Affiliation:
Max-Planck Institute for solid state research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Get access

Abstract

We present the formation of intermolecular nanotube junctions and investigations of their transistor behavior. T-shape junctions were formed by coupling chemically functionalized nanotubes with molecular linkers. An end-to-side or end-to-end heterojunction can be formed by reacting chloride terminated nanotubes with aliphatic diamine. The chemically modified nanotube mats were characterized by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The incorporation of functional groups into nanotubes are first identified by XPS. The carbon binding energy shifts due to the doping effect by attached functional groups. This also leads to a pronounced shift of tangential vibration modes in Raman spectra. To investigate the electrical transport, functionalized nanotubes were deposited on Si substrates, and metal contacts were applied on top of the selected T-shape junctions. The bar of the “T” is used as a transistor channel and the leg of the “T” is used as a gate. In this configuration, the active area is confined to a few nanometers in all three dimensions and gain values of 100 and above are obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tans, S. J., Verschueren, A. R. M., and Dekker, C., Nature 393, 49 (1998)Google Scholar
2. Martel, R., Schmidt, T., Shea, H. R., Hertel, T., and Avouris, Ph., Appl. Phys. Lett. 73, 2447 (1998)Google Scholar
3. Antonov, R. D., and Johnson, A. T., Phys. Rev. Lett. 83, 3274 (1999)Google Scholar
4. Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C., Science 294, 1317 (2001)Google Scholar
5. Derycke, V., Martel, R., Appenzeller, J., Avouris, Ph., Nanoletters 1, 453 (2001)Google Scholar
6. Javey, A., Wang, Q., Ural, A., Li, Y., Dai, H., Nanoletters 2, 929 (2002)Google Scholar
7. Iijima, S., Nature 354, 56 (1991)Google Scholar
8. Chen, J. et al., Science 282, 95 (1998)Google Scholar
9. Mickelson, E. T. et al., Chem. Phys. Lett. 296, 188 (1998)Google Scholar
10. Boul, P. J. et al., Chem. Phys Lett. 310, 367 (1999)Google Scholar
11. Bahr, J. L. et al., J. Am. Chem. Soc. 123, 6536 (2001)Google Scholar
12. Balavine, F. et al., Angew. Chem., Int. Ed. 38, 1912 (1999)Google Scholar
13. Smith, B. W., Monthioux, M., and Luzzi, D. E., Nature 396, 323 (1998)Google Scholar
14. Gerogakilas, V. et al., J. Am. Chem. Soc. 124, 14318 (2002)Google Scholar
15. Haddon, R. C., Science 261, 1545 (1993)Google Scholar
16. Chen, Y. et al., J. Mater. Res. 13, 2423 (1998)Google Scholar
17. Liu, J. et al., Science 280, 1253 (1998)Google Scholar
18. Mawhinney, D. B. et al., Chem. Phys. Lett. 324, 213 (2000)Google Scholar
19. Sano, M., Kamino, A., Okamura, J., and Shinkai, S., Science 293, 1299 (2001)Google Scholar
xs20. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L., and Lieber, C. M., Nature 394, 52 (1998)Google Scholar
21. Chiu, P. W., Guesberg, G. S., Dettlaff-Weglikowska, U., and Roth, S., Appl. Phys. Lett. 80, 3811 (2002)Google Scholar
22. Claye, A. et al., Chem. Phys. Lett. 333, 16 (2001)Google Scholar
23. Kukovecz, A. et al., J. Phsy. Chem. B 106, 6374 (2002)Google Scholar
24. Bendiab, N. et al., Phys. Rev. B 63, 153407 (2001)Google Scholar
25. Dresselhaus, M. S., and Eklund, P. C., Adv. Phys. 49, 705 (2000)Google Scholar
26. Kazaoui, S., Minami, N., Jacquemin, R., Kataura, H., and Achiba, Y., Phys. Rev. B 60, 13339 (1999)Google Scholar