Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:45:18.360Z Has data issue: false hasContentIssue false

Formation and Thermal Properties of Layered Nanocomposites with Layered Double Hydroxides and Polyanions

Published online by Cambridge University Press:  10 February 2011

C. O. Oriakhi
Affiliation:
Department of Chemistry and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331, [email protected]
I. V. Farr
Affiliation:
Department of Chemistry and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331, [email protected]
M. M. Lerner
Affiliation:
Department of Chemistry and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331, [email protected]
Get access

Abstract

Poly(acrylic acid), poly(vinylsulfonate), and poly(styrene sulfonate) are incorporated between the positively-charged sheets of double hydroxide layers M1-xAlx(OH)2+ (M = Mg, Ca, Co) and Zn1-xM' x(OH)2+ (M' = Al, Cr) to form layered nanocomposites. The resulting nanocomposites contain the LDH sheet structures separated by 7.6 – 17.0 Å, which is sufficient to accommodate polymer bilayers between the LDH sheets.

Phase and morphological changes during thermolysis of the nanocomposites with poly(styrenesulfonate) (PSS) are studied by X-ray powder diffraction, scanning and transmission electron micrography, (SEM and TEM) and thermal analyses. Mg4Al2(OH)12CO3·nH2O and the associated PSS / MgAl-LDH nanocomposites show comparable thermal stabilities: the layered structure is lost above 300 °C with the nucleation of MgO and MgAl2O4 phases at approximately 400 and 800 °C, respectively. The PSS / ZnAl-LDH nanocomposite shows complete oxidative pyrolysis of the polyanion at 500 °C, indicating a catalytic effect of zinc oxide on thermolysis. Crystalline oxide products are obtained at approximately 300 °C lower temperature than from thermolysis of Zn6Al2(OH)16CO3·nH2O. SEM and TEM images show that the thermolysis of LDH carbonates produces dense aggregates containing microcrystalline particles, whereas materials obtained from the PSS / MgAl-LDH nanocomposites exhibit a macroporous framework structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Whitesides, G., Mathias, J., and Seto, C., Science 254, 1312 (1991).Google Scholar
2. Ozin, G., Adv. Mater. 4, 612 (1992).Google Scholar
3. Constantino, V. and Pinnavaia, T. J., Inorg. Chem. 34, 883 (1995).Google Scholar
4. Roy, A. De, Besse, J. P., and Bondot, P., Mat. Res. Bull. 20, 1091 (1985).Google Scholar
5. Ookubo, A., Ooi, K., and Hayashi, H., Langmuir 9, 14181422 (1993).Google Scholar
6. Kopka, H., Beneke, K., and Lagaly, G., J. Colloid Interface Sci. 123, 427 (1988).Google Scholar
7. Meyn, M., Beneke, K., and Lagaly, G., Inorg. Chem. 29, 5201 (1990).Google Scholar
8. Carrado, K., Forman, J. E., Botto, R. E., Chem. Mater. 5, 472 (1993).Google Scholar
9. Dutta, P. K. and Robins, D. S., Langmuir 10, 1851 (1994).Google Scholar
10. Chibwe, K. and Jones, W., J. Chem. Soc., Chem. Commun, 926 (1989).Google Scholar
11. Tagaya, H., Sato, S., Morioka, H., Kodakawa, J., Karasu, M., and Chiba, K., Chem. Mater. 5, 1431 (1993).Google Scholar
12. Park, I., Kuroda, K., and Kato, C., J. Chem. Soc. Dalton Trans., 3071 (1990).Google Scholar
13. Raki, L., Rancorut, D. G., and Detellier, C., Chem. Mater. 7, 221 (1995).Google Scholar
14. Kuwahara, T., Onitsuka, O., Tagaya, H., Kadokawa, J., and Chiba, K., J. Incl. Phenom. Mol. Recogn. Chem. 18, 59 (1994).Google Scholar
15. Messersmith, P., and Stupp, S., J. Mater. Res. 7, 2599 (1992).Google Scholar
16. Oriakhi, C., Farr, I., and Lerner, M., J. Mater. Chem. 6, 103 (1996).Google Scholar
17. Challier, T., Slade, R., J. Mater. Chem. 4, 367 (1994).Google Scholar
18. Sugahara, Y., Yokoyama, N., Kuroda, K., and Kato, C., Ceram. Int. 14, 163 (1988).Google Scholar
19. Ruiz-Hitsky, E., Adv. Mater. 5, 334 (1993).Google Scholar
20. Messersmith, P., Stupp, S., Chem. Mater. 7, 454 (1995).Google Scholar
21. Reichle, W., J. Catal. 94, 547 (1985).Google Scholar
22. Tanaka, M., Park, I. Y., Kuroda, K., and Kato, C., Bull. Chem. Soc. Jpn. 62, 3442 (1989).Google Scholar
23. Demotakis, E. D. and Pinnavaia, T. J., Inorg. Chem. 1990, 29, 2393 (1990).Google Scholar
24. Cavani, F., Trifiro, F. and Vaccari., A., Catal. Today. 11, 173 (1992).Google Scholar