Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:10:51.375Z Has data issue: false hasContentIssue false

Formation and Relaxation of Ni(Au) Disilicide

Published online by Cambridge University Press:  15 February 2011

D. Mangelinck
Affiliation:
Laboratoire MATOP, associé au CNRS, case 151, Faculté des sciences de Saint Jérôme, 13397 Marseille cedex 20, France.
P. Ga
Affiliation:
Laboratoire de Métallurgie, associé au CNRS, case 522, Faculté des sciences de Saint Jérôme, 13397 Marseille cedex 20, France.
J. M. Gay
Affiliation:
CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 9, France.
B. Pichaud
Affiliation:
Laboratoire MATOP, associé au CNRS, case 151, Faculté des sciences de Saint Jérôme, 13397 Marseille cedex 20, France.
Get access

Abstract

The formation and the relaxation of NiSi2 films with and without Au are examined by scanning electron microscopy, X-ray diffraction and Rutherford backscattering spectrometry. We studied the solid state reactions between a Ni(7 at.% Au) thin film and a Si substrate which occurs during the solid phase epitaxy before the formation of NiSi2. We show that the addition of Au to the Ni film drastically affects the silicides formation: Ni2Si and NiSi appear simultaneously and the nucleation temperature of NiSi 2 is lowered. The solubility of Au in the three silicides is limited which induces a precipitation of Au. Depending on temperature this precipitation takes various forms: Au enriched surface layer or Au clusters at inner interfaces. The films lattice parameters both parallel and perpendicular to the interface are also measured and compared to the lattice parameters of bulk samples which have been made by solidification from the melt. The relaxation modes are deduced from these measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hensel, J. C., Levi, A. F. J., Tung, R. T. and Gibson, J. M., Appl. Phys. Lett. 47, p. 151 (1985).Google Scholar
2 Hansen, M., Constitution of Binary Alloys, 2nd edition, Mc Graw-Hill, New-York, 1958.Google Scholar
3 Ciccariello, J. C., Poize, S., and Gas, P., J. Appl. Phys. 67, p. 3315 (1990).Google Scholar
4 Gay, J. M., Stocker, P. and Réthoré, F., J. Appl. Phys. 73, p. 8169 (1993).Google Scholar
5 d'Heurle, F. M. and Gas, P., J. Mater. Res. 1, p. 205 (1986).Google Scholar
6 Mangelinck, D., Correia, A., Gas, P., Grob, A. and Pichaud, B., J. Appl. Phys. 78, 1638 (1995).Google Scholar
7 Hung, L. S., Zheng, L. R. and Mayer, J. W., J. Appl. Phys. 54, p. 792 (1983).Google Scholar
8 d'Heurle, F. M., J. Mat. Res. 3, p. 167 (1988).Google Scholar
9 Mangelinck, D., PhD Thesis, Aix-Marseille III, France (1995).Google Scholar
10 Bai, G., Nicolet, M.-A., Vreeland, T., Ye, J.Q. and Wang, K. L., Appl. Phys. Lett. 55, p. 1874 (1989).Google Scholar