Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:29:25.766Z Has data issue: false hasContentIssue false

Formation and Passivation of New Paramagnetic Defects Associated With Thermal Oxides On Silicon

Published online by Cambridge University Press:  22 February 2011

Keith L. Brower*
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-5800
Get access

Abstract

A new spin resonance spectrum has been observed with electron paramagnetic resonance in thermal oxides grown on (111) silicon. Our analysis indicates that this new spectrum consists of two isotropic resonances. One resonance has a g-value of 2.0026 and a linewidth (FWHM) of 1.2 G (labeled SL8); the other resonance has a g-value of 2.0029 and a linewidth (FWHM) of 5 G (labeled SL9). These spectra might be due to impurity contamination resulting from the oxidation process and associated with defects at interior surfaces. The SL8 resonance in particular appears to be located within the as-grown thermal oxide. The effects of 60Co gamma irradiation and annealing in either hydrogen or ammonia on these spectra are also presented in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nishi, Y., Japan; J. Appl. Phys. 10, 52 (1971).Google Scholar
2. Caplan, P. J., Poindexter, E. H., Deal, B. E., and Razouk, R. R., J. Appl. Phys. 50, 5847 (1979).CrossRefGoogle Scholar
3. Poindexter, E. H., Gerardi, G. J., Rueckel, M. -E., Caplan, P. J., Johnson, N. M., and Biegelsen, D. K., J. Appl. Phys. 56, 2844 (1984).Google Scholar
4. Brower, K. L., in Material Science Forum. Defects in Semiconductors I, edited by von Bardeleben, H. J. (Trans Tech Publications, Switzerland,1986), p. 181.Google Scholar
5. Brower, K. L., Lenahan, P. M., and Dressendorfer, P. V., Appl. Phys. Lett. 41, 251 (1982).CrossRefGoogle Scholar
6. Takahashi, T., Triplett, B. B., Yokogawa, K., and Sugano, T., Appl. Phys. Lett. 51, 1334 (1987).Google Scholar
7. Devine, R. A. B. and Debroux, M. H., J. Appl. Phys. 54, 4197 (1983).CrossRefGoogle Scholar
8. Stesmans, A., Braet, J., Witters, J., and DeKeersmaecker, R. F., J. Appl. Phys. 55, 1551 (1984).Google Scholar
9. Mikawa, R. E. and Lenahan, P. M., Appl. Phys. Lett. 46, 550 (1985); J. Appl. Phys. 59, 2054 (1986)..Google Scholar
10. Griscom, D. L., J. Appl. Phys. 58, 2524 (1985).Google Scholar
11. Brower, K. L., Rev. Sci. Instrum. 48, 135 (1977).Google Scholar
12. Kusumoto, H. and Shoji, M., J. Phys. Soc. Japan 17, 1678 (1962).Google Scholar
13. Müller, K. A., Chan, P., Kleiner, R., Ovenall, D. W., and Sparnaay, M. J., J. AppI. Phys. 35, 2254 (1964).Google Scholar
14. Chung, M. F. and Haneman, D., J. Appl. Phys. 37, 1879 (1966).Google Scholar
15. Chan, P. and Steinemann, A., Surf. Sci. 5, 267 (1966).Google Scholar
16. Miller, D. J. and Haneman, D., Surf. Sci. 24, 639 (1971).Google Scholar
17. Dersch, H., Stuke, J., and Beichler, J., phys. stat. sol. (b) 105, 265 (1981).Google Scholar
18. Carlos, W. E., J. Non-Crystalline Solids 66, 157 (1984).Google Scholar
19. Hofmann, K., Rubloff, C. W., and McCorkle, R. A., Appl. Phys. Lett. 49, 1525 (1986).Google Scholar