Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:11:05.387Z Has data issue: false hasContentIssue false

Formation and Electrical Interfacing of Nanocrystal-Molecule Nanostructures

Published online by Cambridge University Press:  31 January 2011

Claire Barrett
Affiliation:
[email protected], Tyndall National Institute, Nanotechnology Group, Cork, Ireland
Gaëtan Lévêque
Affiliation:
[email protected], Tyndall National Institute, Photonics Theory Group, Cork, Ireland
Hugh Doyle
Affiliation:
[email protected], Tyndall National Institute, Nanotechnology Group, Cork, Ireland
Donocadh P Lydon
Affiliation:
[email protected], University College Cork, Department of Chemistry, Cork, United States
Gareth Redmond
Affiliation:
[email protected], Tyndall National Institute, Nanotechnology Group, Cork, Ireland
Trevor R Spalding
Affiliation:
[email protected], University College Cork, Department of Chemistry, Cork, United States
Aidan J Quinn
Affiliation:
[email protected], Tyndall National Institute, Nanotechnology Group, Lee Maltings, Prospect Row, Cork, 0, Ireland
Get access

Abstract

The formation of nanocrystal-molecule-nanocrystal nanostructures via controlled mixing of Au nanocrystals and bifunctional Re linkers is reported. UV-visible absorbance data, coupled with histogram analysis of nanostructures measured using Scanning Electron Microscopy has shown a characteristic optical response at wavelengths close to 600 nm following formation of dimer and trimer nanostructures. Directed assembly processes based on dielectrophoretic trapping have also been developed for electrical interfacing of these nanostructures between top-down nanoelectrode pairs for electrical characterization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Heath, J. R. and Ratner, M. A. Phys. Today 56 (5), 4349 (2003).Google Scholar
2 Tao, N. J. Nature Nanotechnology 1 (3), 173181 (2006).Google Scholar
3 Brousseau, L. C. Novak, J. P. Marinakos, S. M. and Feldheim, D. L. Adv. Mater. 11 (6), 447449 (1999).Google Scholar
4 Dadosh, T. Gordin, Y. Krahne, R. Khivrich, I. Mahalu, D. Frydman, V. Sperling, J. Yacoby, A. and Bar-Joseph, I., Nature 436 (7051), 677680 (2005).Google Scholar
5 Chu, C. W. Na, J. S. and Parsons, G. N. J. Am. Chem. Soc. 129 (8), 22872296 (2007).Google Scholar
6 Liao, J. Bernard, L. Langer, M. Schonenberger, C. and Calame, M. Adv. Mater. 18 (18), 24442447 (2006).Google Scholar
7 Jensen, T. Kelly, L. Lazarides, A. and Schatz, G. C. J. Clust. Sci. 10 (2), 295317 (1999).Google Scholar
8 Atay, T. Song, J. H. and Nurmikko, A. V. Nano Lett. 4 (9), 16271631 (2004).Google Scholar
9 Sonnichsen, C. Reinhard, B. M. Liphardt, J. and Alivisatos, A. P. Nature Biotechnology 23 (6), 741745 (2005).Google Scholar
10 Billaud, P. Marhaba, S. Cottancin, E. Arnaud, L. Bachelier, G. Bonnet, C. Fatti, N. Del, Lerme, J. Vallee, F. Vialle, J. L. Broyer, M. and Pellarin, M. J. Phys. Chem. C 112, 978982 (2008).Google Scholar
11 Lydon, D. P. Spalding, T. R. and Gallagher, J. F. Polyhedron 22 (9), 12811287 (2003).Google Scholar
12 Haiss, W. Thanh, N. T. K. Aveyard, J. and Fernig, D. G. Anal. Chem. 79 (11), 42154221 (2007).Google Scholar
13 Xu, Y.-l. Appl. Opt. 34 (21), 45734588 (1995).Google Scholar
14 Simmons, J. G. J. Appl. Phys. 34 (6), 17931803 (1963).Google Scholar