Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:45:08.004Z Has data issue: false hasContentIssue false

Formation and Characterization of Hybrid Nanodots Floating Gate for Optoelectronic Application

Published online by Cambridge University Press:  28 February 2013

Seiichi Miyazaki*
Affiliation:
Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
Get access

Abstract

We have fabricated a hybrid nanodots floating gate (FG) in which Si quantum dots (QDs) and silicide nanodots (NDs) are stacked with a very thin SiO2 interlayer in order to satisfy both multiple valued capability and charge storage capacity for a sufficient memory window and to open up novel functionality for optoelectronic application. In electron charging and discharging characteristics measured with application of pulsed gate biases to MOS capacitors with a hybrid NDs FG, stepwise changes in the rates for electron injection and emission were revealed with increasing pulse width at room temperature. Also, nMOSFETs with a hybrid NDs FG show unique hysteresis with stepwise changes in the drain current - gate voltage characteristics. The observed characteristics can be interpreted in terms that the electron injection and storage into silicide-NDs proceed through the discrete charged states of Si-QDs. For MOS capacitors with a triple-stacked hybrid NDs FG fabricated by adding another Si-QDs, by subgap light irradiation from the back side of the Si substrate, a distinct infrared optical response in C-V characteristics was detected at room temperature. The result is attributable to the shift of charge centroid in the hybrid NDs FG as a result of transfer of photoexcited electrons from silicide NDs to Si-QDs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tiwari, S., Rana, F., Hanafi, H., Hartstein, H., Crabbe, E. F. and Chan, K., Appl. Phys. Lett. 68, 1377 (1996).CrossRefGoogle Scholar
Kohno, A., Murakami, H., Ikeda, M., Miyazaki, S. and Hirose, M., Jpn. J. Appl. Phys. 40, L721 (2001).CrossRefGoogle Scholar
Ikeda, M., Shimizu, Y., Murakami, H. and Miyazaki, S., Jpn. J. Appl. Phys. 42, 4134 (2003).CrossRefGoogle Scholar
Liu, Z., Lee, C., Narayanan, V., Pei, G. and Kan, E. C., IEEE Trans. Electron Devices 49, 1606 (2002).CrossRefGoogle Scholar
Kirimura, H., Uraoka, Y., Fuyuki, T., Okuda, M. and Yamashita, I., Appl. Phys. Lett., 86, 26210 (2005).CrossRefGoogle Scholar
Shimanoe, K., Makihara, K., Ikeda, M. and Miyazaki, S., IEICE Trans. Electron, E92 -C, 616 (2009).CrossRefGoogle Scholar
Ikeda, M., Matsumoto, R., Shimanoe, K., Makihara, K. and Miyazaki, S., Extended Abstract of 2008 Int. Conf. on Solid State Devices and Materials (Tukuba, 2008) p.182.Google Scholar
Miyazaki, S., Hamamoto, Y., Yoshida, E., Ikeda, M. and Hirose, M., Thin Solid Films, 369, 55 (2000).CrossRefGoogle Scholar
Makihara, K., Shimanoe, K., Kawaguchi, Y., Ikeda, M., Higashi, S. and Miyazaki, S., Jpn. J. Appl. Phys. 47, 3099 (2008).CrossRefGoogle Scholar
Nishihara, R., Makihara, K., Kawaguchi, Y., Ikeda, M., Murakami, H., Higashi, S. and Miyazaki, S., Mat. Sci. Forum, 561565, 1213 (2007).CrossRefGoogle Scholar
Miyazaki, S., Ikeda, M., Makihara, K., Shimanoe, K. and Matsumoto, R., Solid State Phenomena, 154, 95 (2009).CrossRefGoogle Scholar
Takeuchi, K., Murakami, H. and Miyazaki, S., Proc. of ECS Int. Semiconductor Technology Conf., (Tokyo, 2002) p. 1.Google Scholar
Ikeda, M., Shimanoe, K., Matsumoto, R., Makihara, K. and Miyazaki, S., Extended Abstract of Int. Meeting for Future Electron Devices, Kansai (2008, Osaka) p. 43.Google Scholar
Miyazaki, S., Makihara, K. and Ikeda, M., Thin Solid Films 517, 41 (2008).CrossRefGoogle Scholar
Miyazaki, S., Ikeda, M. and Makihara, K., ECS Trans. 11(6), 233 (2007).CrossRefGoogle Scholar
Miyazaki, S., Makihara, K. and Ikeda, M., ECS Trans. 25(7), 433 (2009).CrossRefGoogle Scholar
Morisawa, N., Ikeda, M., Nakanishi, S., Kawanami, A., Makihara, K. and Miyazaki, S., Jpn. J. Appl. Phys. 49, 04DJ04 (2010).CrossRefGoogle Scholar