Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:38:17.010Z Has data issue: false hasContentIssue false

For1ation of Zeolites: A Molecular Description

Published online by Cambridge University Press:  28 February 2011

Prabir K. Dutta
Affiliation:
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
M. Puri
Affiliation:
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
D. C. Shieh
Affiliation:
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
Get access

Abstract

Raman spectroscopy of the solution, solid and gel phases present during crystallization of zeolite X was investigated. The vibrational data indicate that an amorphous aluminosilicate solid, composed primarily of four membered aluminosilicate rings is in contact with monomeric silicate ions during the prenucleation stages of the zeolite formation. No intermediate building blocks specific to zeolite X could be discerned from the vibrational spectra. The influence of a series of monovalent cations on the crystallization process was also examined, and a model of zeolite formation has been proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sand, L. B., Pure Appl. Chem., 52, 2105 (1980).Google Scholar
2. Flanigen, E. M., Adv. Chem. Ser., No. 121, 119 (1973).Google Scholar
3. Dutta, P. K., and Shieh, D. C., J. Phys. Chem., 90, 2331 (1986).Google Scholar
4. Dutta, P. K., Shieh, D. C., and Purn, M. J., J. Phys. Chem., 91, 2332 (1987).Google Scholar
5. Dutta, P. K. and Puri, M. J., J. Phys. Chem., 91, 4329 (1987).Google Scholar
6. Breck, D. W., Zeolite Molecular Sieves, Wiley, N.Y. 1974; p. 245.Google Scholar
7. Beard, W. C., Adv. Chem. Ser., No. 21, 162, (1973).Google Scholar
8. Roozeboom, F., Robson, H. E., and Chan, S. S., Zeolites, 3, 321 (1983).Google Scholar
9. Engelhardt, G., Fahlke, B., Magi, M., and Lippmaa, E., Zeolites, 5, 49 (1985).Google Scholar
10. Dutta, P. K. and Shieh, D. C., Appl. Spectrosc. 39, 343 (1985).CrossRefGoogle Scholar
11. McMillan, P., Am Mineral, 69, 622 (1984).Google Scholar
12. Sharma, S. K., Philpotts, J. A. and Mattson, D. W., J. Non Cryst. Solids, 21, 403 (1985).Google Scholar
13. Mattson, D. W., Sharma, S. K., and Philpotts, J. A., Am. Min., 71, 694 (1986).Google Scholar
14. Sharma, S. K., Simons, B., and Yoder, H. S. Jr., Am. Min., 71, 694 (1986).Google Scholar
15. Taylor, M., and Brown, G. E. Jr., Geochim. Cosmochim. Acta, 43, 61 (1979).Google Scholar
16. Kostinko, J. A., ACS Symp. Ser., 218, 3 (1983).Google Scholar
17. Freund, E. F., J. Cryst. Growth, 34, 11 (1976).Google Scholar
18. Frank, H. S., Wen, W. Y., Discussions Faraday Soc., 24, 133 (1957).Google Scholar
19. Gurney, R., Ionic Processes in Solution, (Dover Publ. Co., New York, 1962).Google Scholar
20. Schuster, P., Jakubetz, W. and Marius, W., Tonics in Current Chemistry, 60, 1, (Springer-Verlag, Berlin 1975).Google Scholar
21. Kavanau, J. L., Water and Solute-Water Interactions, (Holden-Day, San Francisco, 1964).Google Scholar
22. Zundel, G., Hydration and Intermolecular Interaction, (Academic Press, New York, 1969).Google Scholar
23. Hertz, H. G., Angew. Chem. International Ed., 9, 124 (1970).CrossRefGoogle Scholar
24. Verral, R. E., in Water - A Comnrehensive Treatise, Ed. F., Franks, (Plenum Press, N.Y. 1973), p. 211.Google Scholar
25. Lilley, T. H., in Water - A Comprehensive Treatise, Ed. F., Franks, (Plenum Press, New York, 1973), p. 265.Google Scholar