Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:36:06.676Z Has data issue: false hasContentIssue false

Focused Microwave-assisted Synthesis of 2,5-Dihydrofuran Derivatives as Electron Acceptors for Highly Efficient Nonlinear Optical Chromophores

Published online by Cambridge University Press:  15 February 2011

Sen Liu
Affiliation:
Departments of Materials Science and Engineering and Chemistry University of Washington Seattle, WA 98195
Marnie A. Haller
Affiliation:
Departments of Materials Science and Engineering and Chemistry University of Washington Seattle, WA 98195
Jingdong Luo
Affiliation:
Departments of Materials Science and Engineering and Chemistry University of Washington Seattle, WA 98195
Sei-Hum Jang
Affiliation:
Departments of Materials Science and Engineering and Chemistry University of Washington Seattle, WA 98195
Hong Ma
Affiliation:
Departments of Materials Science and Engineering and Chemistry University of Washington Seattle, WA 98195
Larry R. Dalton
Affiliation:
Departments of Materials Science and Engineering and Chemistry University of Washington Seattle, WA 98195
Alex K.-Y. Jen
Affiliation:
Departments of Materials Science and Engineering and Chemistry University of Washington Seattle, WA 98195
Get access

Abstract

A diversified family of 2,5-dihydrofuran derivatives has been synthesized as a new class of highly efficient and tunable electron acceptors using the single-mode focused microwave irradiation. High poling efficiency and very large electro-optic coefficients (r33 values of 128 and 116 pm/V at 1.3 μm) have been demonstrated using 2-dicyanomethylen-3-cyano-4,5,-dimethyl-5-trifluoromethyl-2,5-dihydrofuran (CF3-TCF)-based chromophores as dopant in poly(methyl methacrylate) (PMMA) and a high glass-transition temperature polyquinoline (PQ-100) respectively. Excellent dipole alignment stability has also been demonstrated in the guest/host composite at 85°C. Multi-functionalized NLO chromophores based on hydroxy containing 2,5-dihydrofuran acceptors were also synthesized through microwave methodology for further characterizations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, M., Katz, H. E., Erben, C., Gill, D. M., Gopalan, P., Heber, J. D., McGee, D. J. Science 298, 1401, (2002). Y. Shi, C. Zhang, H. Zhang, J. H. Betchel, L. R. Dalton, B. H. Robinson, W. H. Steier Science 288, 119, (2000). C. Samyn, T. Verbiest, A. Persoons Macromol. Rapid. Commun. 21, 1, (2000). L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincard, J. Amend, A. K.-Y. Jen J. Mater. Chem. 9, 1905, (1999). T. J. Marks, M. A. Ratner Angew. Chem. Int. Ed. Engl. 34, 155, (1995). D. S. Chemala, J. Zyss Nonlinear Optical Properties of Organic Molecules and Crystals (Academic Press: New York, 1987).Google Scholar
2. Marder, S. R., Kippelen, B., Jen, A. K.-Y., Peyghambarian, N. Nature 388(6645), 845, (1997). D. M. Burland, R. D. Miller, C. A. Walsh Chem. Rev. 94, 31, (1994). H. Ma, S. Liu, J. Luo, S. Suresh, L. Liu, S. H. Kang, M. Haller, T. Sassa, L. R. Dalton, A. K.-Y. Jen Adv. Func.Mater. 12, 565, (2002).Google Scholar
3. Wise, D. L., Wnek, G. E.,Trantolo, D. J., Cooper, T. M., Gresser, J. D. Photonic Polymer Systems, Fundamentals, Methods, and Applications. (Marcel Dekkar, New York, 1998), p. 847894.Google Scholar
4. Ahlmeim, M., Barzoukas, M., Bedworth, P. V., Blanchard-Desce, M., Fort, A., Hu, Z. Y., Marder, S. R., Perry, J. W., Runser, C.,Staehin, M., Zyss, B. Science 271, 335, (1996). S. S. Sun, C. Zhang, L. R. Dalton, S. M. Garner, A. Chen, W. H. Steier. Chem. Mater., 8(11), 2539, (1996). P. Boldt, G. Bourhill, C. Brauchle, Y. Jim, R. Kammler, C. Muller, J. Rase, J. Wichern Chem. Commun. 793, (1996).Google Scholar
5. Dalton, L. R. Opt. Eng. 39(3), 589, (2000). M. Q. He, T.M. Leslie, J. A. Sinicropi Chem. Mater. 14, 4662, (2002).M. Q.He, T.M. Leslie, J. A. Sinicropi, S.M. Garner, L. D. Reed Chem. Mater., 14, 4669, (2002).Google Scholar
6. Melikian, G., Rousessac, F. P., Alexander, C. Syn. Commun. 25(19), 3045, (1995).Google Scholar
7. Villemin, D., Liao, L. Syn. Commun. 31(11), 1771, (2001).Google Scholar
8. Ermer, S., Bedworth, P. V. (private communication).Google Scholar
9. Taft, R. W. Progress in Phys. Org. Chem. (John Wiley&Sons, New York. 1981), p. 253. J. D. Hepworth, J. A. Hudson, D. A. Ibbitson, G. Hallas, J. Chem. Soc. Perkin II, 1905, (1972).Google Scholar
10. Wu, X., Wu, J., Jen, A. K.-Y. J. Am. Chem. Soc. 121, 472, (1999).Google Scholar
11. Teng, C. C., Man, H. T. Appl. Phys. Lett. 56(18), 1734, (1990).Google Scholar
12. Luo, J.D., Liu, S.,Haller, M.A., Liu, L., Ma, H., and Jen, A. K.-Y. Adv.Mater. 14(23), 1763, (2002).Google Scholar