Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:15:14.175Z Has data issue: false hasContentIssue false

Flux Mapping and Magnetic Behavior of Grain Boundaries in Nd-Fe-B Magnets

Published online by Cambridge University Press:  10 February 2011

V.V. Volkov
Affiliation:
Dept.of Applied Science, Brookhaven National Laboratory, Upton, NY 11973, [email protected]
Yimei Zhu
Affiliation:
Dept.of Applied Science, Brookhaven National Laboratory, Upton, NY 11973, [email protected]
Get access

Abstract

Advanced Fresnel- & Foucault-Lorentz microscopy were applied to analyze magnetic behavior of the grain boundaries in Nd-Fe-B hard magnets. In-situ TEM magnetizing experiments combined with these imaging methods revealed the process of magnetization reversal in polycrystalline sintered and die-upset Nd-Fe-B under various magnetic fields. Fine details of magnetic flux distribution, derived from the magnetic interferograms created by phase-coherent Foucault imaging, provide a quantitative description of the local variation of magnetic flux. Our study suggests that the grain boundaries play an important multi-functional role in the reversal of magnetization, by acting as (a) pinning centers of domain walls, (b) centers of nucleation of reversal domains, and (c) sinks or sources for migrating magnetostatic charges and/or dipoles. They also ensure a smooth transition for irreversible remagnetization in polycrystalline samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tonomura, A., Surf. Sci. Rep., 20, 317 (1994).Google Scholar
[2] Chapman, J.N., Johnston, A.B., Heyderman, L.J., McVitie, S. and W.Nicholson, A.P., IEEE Trans. Magn., 30–6, 4479 (1994); A.B. Johnston, J.N. Chapman, B. Khamsehpour and C.D.W. Wilkinson, J. Phys. D: Appl. Phys. 29, 1419 (1996).Google Scholar
[3] Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H., Matsuura, Y., J. Appl. Phys. 55, 2083 (1984).Google Scholar
[4] Hu, J., Liu, Y., Yin, M., Wang, Y., Hu, B., Wang, Z., J. of Alloys and Comp., 288, 226 (1999).Google Scholar
[5] Lee, R. W., Appl. Phys. Lett. 46, 790 (1985).Google Scholar
[6] Lee, R. W., Brewer, E. G., Schaffel, N. A., IEEE Trans. Magn. MAG- 21, 1958 (1985).Google Scholar
[7] Fuerst, C. D., Brewer, E. G., J. Appl. Phys. 73, 5751 (1993).Google Scholar
[8] Volkov, V.V., Zhu, Y., J. Appl. Phys. 85, 3254 (1999).Google Scholar
[9] Volkov, V.V., Crew, D. C., Zhu, Y., Lewis, L. H., Proc. “Microscopy and Microanalysis”, Vol. 5, Suppl. 2, Portland, Oregon, Aug.l-5, 1999, p. 4647.Google Scholar
[10] Volkov, V.V., Zhu, Y.. Unpublished.Google Scholar
[11] Aharonov, Y., Bohm, D., Phys. Rev. 115, 485 (1959).Google Scholar
[12] Mishra, R. K., J. Appl. Phys. 62, 967 (1987); R. K. Mishra, Mater. Sci. Eng. B 7, 297 (1991).Google Scholar
[13] Volkov, V.V. and Zhu, Y., submitted to J. Magn. Magn. Mater., Nov. 1999.Google Scholar