Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:56:19.019Z Has data issue: false hasContentIssue false

Fluorine-Induced Microvoids in Amorphous Silicon

Published online by Cambridge University Press:  25 February 2011

A. A. Langford
Affiliation:
Solar Energy Research Institute, 1617 Cole Blvd., Golden, Colorado 80401
A. H. Mahan
Affiliation:
Solar Energy Research Institute, 1617 Cole Blvd., Golden, Colorado 80401
M. L. Fleet
Affiliation:
Solar Energy Research Institute, 1617 Cole Blvd., Golden, Colorado 80401
J. Bender
Affiliation:
Solar Energy Research Institute, 1617 Cole Blvd., Golden, Colorado 80401
Get access

Abstract

The effects of fluorine incorporation on the microstructural and electronic properties of a-Si:H:F with 1–7 at.% F have been systematically studied. Films were prepared by direct photo-CVD of disilane with xenon difluoride as the fluorine source. The fluorine content was measured by infrared spectroscopy, xray photoelectron spectroscopy (XPS) and electron microprobe. Infrared spectra show that as the fluorine content increases, silicon dihydride bonding increases. Density measurements confirm that this is associated with an increase in microvoid content. With the increase in F and SiH2, the photoconductivity decreases over two orders of magnitude. A review of the literature shows that the appearance of SiH2 is a universal result of >1% F incorporation and is not limited to the present study. This suggests that fluorination of amorphous silicon is not beneficial for photovoltaic application.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Madan, A., Ovshinsky, S.R. and Benn, E., Philos. Mag. B 40, 259 (1979).CrossRefGoogle Scholar
2 Ovshinsky, S.R. and Adler, D., Mat. Res. Soc. Symp. Proc. 49, 251 (1985).CrossRefGoogle Scholar
3 Langford, A.A., Bender, J., Fleet, M.L. and Stafford, B.L., J. Vac. Sci. Technol. B (to be published June, 1989).Google Scholar
4 Fang, C.J., Ley, L., Shanks, H.R., Gruntz, K.J. and Cardona, M., Phys. Rev. B 22, 6140 (1980).CrossRefGoogle Scholar
5 Janai, M., Frey, L., Weil, R. and Pratt, B., Solid State Commun. 48, 521 (1983).CrossRefGoogle Scholar
6 Brodsky, M.H., Cardona, M. and Cuomo, J.J., Phys. Rev. B 16, 3556 (1977).CrossRefGoogle Scholar
7 Wagner, H. and Beyer, W., Solid State Commun. 48, 585 (1983).CrossRefGoogle Scholar
8 Lucovsky, G., Solid State Commun. 29, 571 (1979).CrossRefGoogle Scholar
9 Mahan, A.H., Raboisson, P. and Tsu, R., Appl. Phys. Lett. 50, 335 (1987).CrossRefGoogle Scholar
10 Mahan, A.H., Mascarenhas, A., Williamson, D.L. and Crandall, R. S., Mat. Res. Soc. Symp. Proc. 118, 641 (1988).CrossRefGoogle Scholar
11 Langford, A.A., Fleet, M.L., Nelson, A.J., Asher, S.E., Goral, J.P. and Mason, A., J. Appl. Phys. (to be published June, 1989).Google Scholar
12 Usui, S., Sawada, A. and Kikuchi, M., J. Non-Cryst. Solids 41, 151 (1980).CrossRefGoogle Scholar
13 Uchida, Y., Ichimura, T., Nabeta, O., Takeda, Y. and Haruki, H., Jpn. J. Appl. Phys. 21, Suppl. 21–2, 193 (1982).CrossRefGoogle Scholar
14 Nishihata, K., Komori, K., Konagai, M. and Takahashi, K., Jpn. J. Appl. Phys. 20, Suppl. 20–2, 151 (1981).CrossRefGoogle Scholar
15 Nakayama, Y., Akiyama, K., Kawamura, T., Jpn.J. Appl. Phys. 22, L754 (1983).CrossRefGoogle Scholar
16 Nakano, S., Kishi, Y., Ohnishi, M., Tsuda, S., Shibuya, H., Nakamura, N., Hishikawa, Y., Tarui, H., Takahama, T. and Kuwano, Y., Mat. Res. Soc. Symp. Proc. 49, 275 (1985).CrossRefGoogle Scholar
17 Matsuda, A., Yamasaki, S., Nakagawa, K., Okushi, H., Tanaka, K., lizima, S., Matsumura, M. and Yamamoto, H., Jpn. J. Appl. Phys. 19, L305 (1980).CrossRefGoogle Scholar