Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:17:41.021Z Has data issue: false hasContentIssue false

Fluorine Doping of Pyrogenic Silica

Published online by Cambridge University Press:  25 February 2011

T. J. Miller
Affiliation:
AT&T Laboratories, Princeton, New Jersey 08540
D. A. Nicol
Affiliation:
AT&T Laboratories, Princeton, New Jersey 08540
K. D. Pohl
Affiliation:
AT&T Laboratories, Princeton, New Jersey 08540
H. R. Clark
Affiliation:
AT&T Laboratories, Princeton, New Jersey 08540
Get access

Abstract

The incorporation of atomic fluorine into flame synthesized silica boules has been investigated. Soot boules were doped with fluorine using three different methods: (A) in a low temperature process, using XeF2 as the fluorinating agent prior to consolidation, (B) utilizing SiF4 or SF6 in the reagent gas mix during the combustion synthesis and soot deposition step and (C) in situ treatment with SF6 during the dehydration/ consolidation step at elevated temperatures. All three methods produced uniformly down-doped glass after consolidation, although the maximum fluorine incorporation and level of down-doping for each method followed A <B <C. Fluorine incorporation mechanisms are proposed for each method.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Walker, K. L., Csencsits, R. and Wood, D. L., Technical Digest, Topical Meeting on Optical Fiber Communications, (Optical Society of America, Wash. D. C.), Paper TUA7Google Scholar
2. Bachmann, P., Pure and Appl. Chem., 57, 1298 (1985)CrossRefGoogle Scholar
3. Kyoto, M., Kanamori, H., Yoshioka, N., Tanaka, G. and Watanabe, M., Technical Digest, Conference on Optical Fiber Communication, New Orleans, LA, 1984, Paper MG5. K. Kokura, K.Yoshida, A. lino and K. Orimo, Technical Digest, Conference on Optical Fiber Communication, New Orleans, LA, 1984, Paper MG6.Google Scholar
4. Berkey, G. E., Technical Digest, Conference on Optical Fiber Communication, New Orleans, LA, 1984, Paper MG3Google Scholar
5. Wehr, H. and Wiechert, D., Materials Research Bulletin, 559 (1986); J. W. Fleming and D. L. Wood, Appl. Opt. 22 3102 (1983); K. Abe, Technical Digest, Second European Conference on Optical Communications, 59, Paris, (1976)Google Scholar
6. Winters, H. F. and Coburn, J. W., Appl. Phys. Lett., 34 (1), 70, (1979). D. L. Flamm, D. E. Ibbotson, J. A. Mucha and V. M. Donnelly, Solid State Technology, 117, April 1983 CrossRefGoogle Scholar
7. Shinn, N. D., Morar, J. F. and McFeely, F. R., J. Vac. Sci. Technol., A 2 (4), 1593, (1984)CrossRefGoogle Scholar
8. Tu, Y., Chuang, T. J. and Winters, H. F., Phys. Rev. B, 23 (2), 823, (1981)CrossRefGoogle Scholar
9. Schreiner, F., McDonald, G. N. and Chernick, C. L., J. Phys. Chem., 72 (4), 1162, (1968)CrossRefGoogle Scholar
10. Chu, W. K., Mayer, J. W. and Nicolet, M. A., Backscattering Spectrometry, Academic Press, New York, 1978 CrossRefGoogle Scholar
11. Kanamori, H., Yoshioka, N., Kyoto, M., Watanabe, M., and Tanaka, G., Technical Digest, Ninth European Conference on Optical Communication, Geneva, (1983)Google Scholar
12. Ingram, B. L., Analytical Chem., 42 1825, (1970)CrossRefGoogle Scholar
13. Miya, T., Nakahara, M., Hanawa, F. and Ohmori, Y., Tenth European Conference on Optical Communication, Stuttgart, (1984), Paper 14A2.Google Scholar
14. Glantschnig, W. J. and Holliday, A., Symposium on Optical Fiber Materials and Properties, Fall Meeting of Materials Research Society, Boston, MA (1986), Paper P2.3.Google Scholar
15. Miller, T. J., unpublished work.Google Scholar