Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:38:11.659Z Has data issue: false hasContentIssue false

Fluorinated Poly(N-vinylcarbazole) Host for Triplet Energy Confinement on Phosphorescent Emitter in Organic Light-emitting Diodes

Published online by Cambridge University Press:  31 January 2011

Yukitami Mizuno
Affiliation:
[email protected], Toshiba corp., Corporate Research & Development Center, Kawasaki, Japan
Isao Takasu
Affiliation:
[email protected], Toshiba corp., Corporate Research & Development Center, Kawasaki, Japan
Shuichi Uchikoga
Affiliation:
[email protected], Toshiba corp., Toshiba Research Europe, Ltd, Kawasaki, Japan
Shintaro Enomoto
Affiliation:
[email protected], Toshiba corp., Corporate Research & Development Center, Kawasaki, Japan
Tomoaki Sawabe
Affiliation:
[email protected], Toshiba corp., Corporate Research & Development Center, Kawasaki, Japan
Akio Amano
Affiliation:
[email protected], Toshiba corp., Corporate Research & Development Center, Kawasaki, Japan
Atsushi Wada
Affiliation:
[email protected], Toshiba corp., Corporate Research & Development Center, Kawasaki, Japan
Jiro Yoshida
Affiliation:
[email protected], Toshiba corp., Corporate Research & Development Center, Kawasaki, Japan
Tomio Ono
Affiliation:
[email protected], Toshiba corp., Corporate Research & Development Center, Kawasaki, Japan
Get access

Abstract

Fluorinated carbazoles as host materials have been investigated for highly efficient organic light emitting diodes (OLEDs). By molecular orbital calculations, we found that fluorinations at position 2, 4, 5 and 7 of carbazole ring were effective for widening HOMO-LUMO energy gap. The energy gaps of our synthesized 2,7-difluorocarbazole (F2-Cz) and 2,4,5,7-tetrafluorocarbazole (F4-Cz), were estimated to be 3.71 eV and 3.87 eV by the absorption spectra, respectively. These energy gaps were higher than that of the non-substituted carbazole (Cz, 3.59 eV). We synthesized poly(N-vinyl-2,7-difluorocarbazole) (F2-PVK) and poly(N-vinyl-2,4,5,7-tetrafluorocarbazole) (F4-PVK) as solution processable polymer host materials. However, the F4-PVK was found to be an unsolved polymer. The F2-PVK could be compared with non substituted poly(N-vinylcarbazole) (PVK) in OLEDs. The emission layer (EML) contained iridium(III) bis [(4,6-di-fluorophenyl)-pyridinato-N,C2′] picolinate (FIrpic) as a blue phosphorescent dopant, and iridium(III) bis [2-(9,9-dihexylfluorenyl)-1-pyridine] acetylacetonate as a yellow dopant. The white OLED with the F2-PVK showed 1.4 times higher luminous current efficiency (24 cd/A) than the PVK (17 cd/A). These data show that the excitation energy is confined on dopants by using fluorinated polymer host material with higher T1 corresponding to wider HOMO-LUMO energy gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., Forrest, S.R., Nature 395, 151 (1998).Google Scholar
2. Baldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E., and Forrest, S. R., Appl. Phys. Lett. 75, 4 (1999).Google Scholar
3. Adachi, C., Baldo, M. A., Thompson, M. E., Forrest, S. R., J. Appl. Phys. 90, 5048 (2001).Google Scholar
4. Holmes, R. J., Forrest, S. R., Tung, Y. J., Kwong, R. C., Brown, J. J., Garon, S., Tompson, M. E., Appl. Phys. Lett. 82, 2422 (2003).Google Scholar
5. Tokito, S., Iijima, T., Suzuri, Y., Kita, H., Tsuzuki, T., Sato, F., Appl. Phys. Lett. 83, 569 (2003).Google Scholar
6. Yeh, S. J., Wu, M. F., Chen, C. T., Song, Y. H., Chi, Y., Ho, M. H., Hsu, S. F., Chen, C. H., Adv. Mater. 17, 285 (2005).Google Scholar
7. Shi, Y.-W., Shi, M.-M., Huang, J.-C., Chen, H.-Z., Wang, M., Liu, X.-D., Ma, Y.-G., Xu, H., Yang, B., Chem. Commun., 1941 (2006).Google Scholar
8. Cooper, C. D., Phys. Rev., 91, 241 (1953).Google Scholar
9. Yang, M. J., Tsutsui, T., Jpn. J. Appl. Phys. 39, L828 (2000).Google Scholar
10. So, F., Krummacher, B., Mathai, M. K., Poplavskyy, D., Choulis, S. A., Choong, V. E., J. Appl. Phys. 102, 091101 (2007).Google Scholar
11. Maegawa, T., Kitamura, Y., Sako, S., Udzu, T., Sakurai, A., Tanaka, A., Kobayashi, Y., Endo, K., Bora, U., Kurita, T., Kozaki, A., Monguchi, Y., Sajiki, H., Chem. Eur. J. 13, 5937 (2007).Google Scholar
12. Watanabe, T., Ueda, S., Inuki, S., Oishi, S., Fujii, N., Ohno, H., Chem. Commun. 4516 (2007).Google Scholar
13. Akermark, B., Eberson, L., Jonsson, E., Pettersson, E., J. Org. Chem. 40, 1365 (1975).Google Scholar
14. Pielichowski, J., Kyzio, J., Polym, J.. Sci., Polym. Lett. Ed. 12, 257 (1974).Google Scholar
15. David, R. L. A., Kornfield, J. A., Macromolecules 41, 1151 (2008).Google Scholar
16. Gaussian 03, Revision C.02, Frisch, M. J., G. et al., Gaussian, Inc., Wallingford CT, 2004.Google Scholar