Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:43:37.139Z Has data issue: false hasContentIssue false

Fluorescent and Magnetic Resonance Imaging by Rare Earth Doped Nanoparticles with Garnet Structure

Published online by Cambridge University Press:  01 February 2011

Ryo Asakura
Affiliation:
[email protected], Keio University, Dept. Appl. Chem., 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
Hiroshi Sakane
Affiliation:
[email protected], Keio University, Department of Applied Chemistry, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
Kunihiro Noda
Affiliation:
[email protected], Keio University, Department of Applied Chemistry, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
Tetsuhiko Isobe
Affiliation:
[email protected], Keio University, Department of Applied Chemistry, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
Masahito Morita
Affiliation:
[email protected], Shiga University of Medical Science, Biomedical MR Science Center, Setatsukinowa-cho, Otsu, 520-2192, Japan
Toshiro Inubushi
Affiliation:
[email protected], Shiga University of Medical Science, Biomedical MR Science Center, Setatsukinowa-cho, Otsu, 520-2192, Japan
Get access

Abstract

Yb3+ doped Y3Al5O12 (YAG:Yb3+) nanoparticles are prepared from yttrium acetate tetrahydrate, ytterbium acetate tetrahydrate and aluminum isopropoxide in 1,4-butanediol by autoclave treatment at 300 °C for 2 h. Moreover, Gd-YAG:Yb3+ nanoparticles are prepared from the mixture of YAG:Yb3+ colloidal solution and gadolinium acetate tetrahydrate by the same autoclave treatment as YAG:Yb3+. Properties of structure, near infrared photoluminescence and magnetic resonance contrast enhancement are characterized for as-prepared and calcined YAG:Yb3+ and Gd-YAG:Yb3+ nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ntziachristos, V., Ripoll, J., Wang, L. V. and Weissleder, R., Nature Biotech. 23, 313 (2005)Google Scholar
2. Sivakumar, S., Diamente, P.R. and Veggel, F.C.J.M. van, Chem. Eur. J. 12, 5878 (2006).Google Scholar
3. Rieter, W. J., Kim, J. S., Taylor, K. M. L., An, H., Lin, W., Tarrant, T. and Lin, W., Angew. Chem. Int. Ed. 46, 3680 (2007).Google Scholar
4. Yang, H., Santra, S., Walter, G.A. and Holloway, P.H., Adv. Mater. 18, 2890 (2006).Google Scholar
5. Prinzen, L., Miserus, R. J. J. H. M., Dirksen, A., Hackeng, T. M., Deckers, N., Bitsch, N. J., Megens, R. T. A., Douma, K., Heemskerk, J. W., Koo, M. E., Frederik, P. M., Slaaf, D. W., Zandvoort, M. A. M. J. van and Reutelingsperger, C. P. M., Nano Lett. 7, 93 (2007).Google Scholar
6. Mulder, W. J. M., Koole, R., Brandwijk, R. J., Storm, G., Chin, P. T. K., Strijkers, G. J., Donegá, C. de Mello, Nicolay, K. and Griffioen, A. W., Nano Lett. 6, 1 (2006).Google Scholar
7. Beng, W. and Zang, Y., Adv. Mater. 17, 2375 (2005).Google Scholar
8. Bridot, J. L., Faure, A. C., Laurent, S., Rivière, C., Billotey, C., Hiba, B., Janier, M., Josserand, V., Coll, J. L., Elst, L. V., Muller, R., Roux, S., Perriat, P. and Tillement, O., J. Am. Chem. Soc. 129, 5076 (2007).Google Scholar
9. Asakura, R., Isobe, T., Kurokawa, K., Aizawa, H. and Ohkubo, M., Anal. Bioanal. Chem. 386, 1641 (2006).Google Scholar
10. Wang, X., Xu, X., Zeng, X., Zhao, Z., Jiang, B., He, X. and Xu, J., Spectrochemica Acta Part A 63, 49 (2006).Google Scholar