Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:07:21.588Z Has data issue: false hasContentIssue false

Fluorescence Yield Near Edge Spectroscopy (Fynes) for Ultra Low Z Materials: an In-Situ Probe of Reaction Rates and Local Structure

Published online by Cambridge University Press:  21 February 2011

D. A. Fischer
Affiliation:
Exxon PRT, Bldg. 510E, Brookhaven National Laboratory, Upton, NY 11973
J. L. Gland
Affiliation:
Chemistry Dept., University of Michigan, Ann Arbor, MI 48109
G. Meitzner
Affiliation:
Exxon Research and Engineering Co., Annandale, NJ 08801
Get access

Abstract

Fluorescence Yield Near Edge Spectroscopy (FYNES) of ultra low Z materials represents a synchrotron radiation milestone for in-situ determination of local structure for a range of materials problems from monolayers to bulk samples even in the presence of a reactive atmosphere. Two examples will be presented highlighting the broad range of materials problems addressed by the FYNES technique. First a study of the kinetics of CO displacement on Ni(100) by hydrogen at pressures up to.1 torr. These kinetic results highlight the unique capabilities of FYNES to directly characterize surface reaction rates in the presence of reactive gases. Second, a pioneering fluorescence EXAFS study characterizing low concentration fluorine materials will be discussed. Finally new opportunities in FYNES presented by increased photon flux from insertion-device- based sources will be explored.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stohr, J., in “Principles, Techniques, and Applications of EXAFS, SEXAFS, and XANES,” Prins, R. and Konigsberger, D. C., eds., John Wiley, New York, 1985.Google Scholar
2. Stohr, J., Kollin, E. B., Fischer, D. A., Hastings, J. B., Zaera, F., and Sette, F., Phys. Rev. Lett. 55. 1468 (1985).Google Scholar
3. Fischer, D. A., Dobler, U., Arvanitis, D., Wenzel, L., Baberschke, K. and Stohr, J., Surf. Sci. 177. 144 (1986).Google Scholar
4. Fischer, D. A., Colbert, J., and Gland, J. L., Rev. Sci. Instr. March/April (1989).Google Scholar
5. Zaera, F., Fischer, D. A., Shen, S., Gland, J. L., Surf. Sci. 194, 205 (1988).Google Scholar
6. Tracy, J. C., J. Chem. Phys. 56, 2736 (1971).Google Scholar
7. Tracy, J. C. and Burkstrand, J. M., CRS Crit, Rev. in Solid St. Sci. 4, (1974), Issue 3, 381.Google Scholar
8. Christmann, K., Schober, O., Ertle, G., Neumann, M., J. Chem. Phys. 60, 4528 (1974).Google Scholar
9. Henke, B. and Tester, M. in Advances in X-ray Analysis, Vol. 18, Plenum Press (1975).Google Scholar
10. Stohr, J. and Jaeger, R., Phys. Rev. B 26, 4111 (1982).Google Scholar