Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T08:03:50.833Z Has data issue: false hasContentIssue false

Fluorescence from Coated Oxide Nanoparticles

Published online by Cambridge University Press:  15 March 2011

D. Vollath
Affiliation:
Forschungszentrum Karlsruhe, Institut fuer Materialforschung IIIP.O.Box 3640, D-76021 Karlsruhe, Germany
I. Lamparth
Affiliation:
Forschungszentrum Karlsruhe, Institut fuer Materialforschung IIIP.O.Box 3640, D-76021 Karlsruhe, Germany
D. V. Szabó
Affiliation:
Forschungszentrum Karlsruhe, Institut fuer Materialforschung IIIP.O.Box 3640, D-76021 Karlsruhe, Germany
Get access

Abstract

In many cases, coated nanoparticles behave like isolated ones. Using the microwave plasma process, it is possible to produce oxide nanoparticles with ceramic or polymer coating. Coating the particles has the additional advantage that by proper selection of the coating it is possible to suspend the particles in distilled water without using any colloid stabilizer. From quantum dots made of sulfides or selenides, it is well known from literature that fluorescence depends strongly on the coating of the kernels. In the case of CdSe, the kernels are coated with CdS. Within this study, similar phenomena are found with coated oxide nanoparticles having sizes of ca. 6 nm exhibiting a very narrow particle size distribution. The coating consists of a second ceramic phase or a polymer one, each one influencing fluorescence differently. Obviously, the type of coating is a tool to modify fluorescence. This behavior is demonstrated on kernels made of Al2O3, ZrO2, HfO2, ZnO etc. PMMA, PTFE, or Al2O3 were used as coating material. In most cases, the fluorescence spectra showed broad bands. In some cases, such as ZnO, additionally, a sharp emission line in the UV appears. It is interesting to note that coatings made of fluorine containing polymer materials did not lead to fluorescence intensities comparable with PMMA coatings. The observed spectra are equivalent whether the powder is in aqueous suspensions or dry on a quartz glass carrier. The experimental results in this study indicate that the combination of non-fluorescent oxide core with a non-fluorescent polymer coating may lead to a nanocomposite with strong fluorescence. This is a phenomenon not described in literature until now.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Soukka, T., Paukkunen, J., Harma, H., Lonnberg, S., Lindroos, H., Lovgren, T., Clinical Chemistry 47, 1269 (2001).Google Scholar
2. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S., Alivsatos, A. P., Science 281, 2013 (1998).Google Scholar
3. Gerion, D. et al., J. Phys. Chem. B 105, 8861 (2001).Google Scholar
4. Chan, W. C. W., Nie, S., Science 281, 2016 (1998).Google Scholar
5. Schaertl, S., Meyer-Almez, F. J., Lopez-Calle, E., Siemers, A., Kramer, J., J. of Biomol. Screening 5, 227 (2000).Google Scholar
6. Taylor, J. R., Fang, M. M., Nie, S. M., Anal. Chem. 72, 1979 (2000).Google Scholar
7. Miguel, I. de, Imbertie, L., Rieumajou, V., Major, M., Kravtzoff, R., D. Betbederm Pharmaceutical Res. 17, 817 (2000).Google Scholar
8. Tien, Y., Newton, T., Kotov, N. A., Guldi, D. M., Fendler, J. H., J. Phys. Chem. 100, 8927 (1996).Google Scholar
9. Porteanu, H. E., Lifshitz, E., Pflughoefft, M., Eychmüller, A., Weller, H., Phys. Stat. Sol. B 226, 219 (2001).Google Scholar
10. Yang, Y., Leppert, V. J., Risbud, S. H., Twamely, B., Power, P. P., Lee, H. W. H., Appl. Phys. Lett. 74, 2262 (1999).Google Scholar
11. Cao, Y. G., Chen, X. L., Li, J. Y., Lan, Y. C., Liang, J. K., Appl. Phys. A 71, 229 (2000).Google Scholar
12. Yang, P., Lu, M., Xu, D., Yuan, D., Zhou, G., Appl. Phys. A 73, 455 (2001).Google Scholar
13. Mikulec, F. V., Kuno, M., Bennati, M., Hall, D. A., Griffin, R. G., Bawendi, M. G., J. Am. Chem. Soc. 122, 2532 (2000).Google Scholar
14. Chen, Y., Cao, Y., Bai, Y., Yang, W., Yang, J., Jin, H., Li, T., J. Vac. Sci. Technol. B 15, 1442 (1997).Google Scholar
15. Monticone, S., Tufeu, R., Kanaev, A. V., J. Phys. Chem. B 102, 2854 (1998).Google Scholar
16. Guo, L., Yang, S., Yang, C., Yu, P., Wang, J., Ge, W., Wang, G. K. L., Chem. Mater. 12 2268 (2000).Google Scholar
17. Wang, Y., Cheng, H., Zhang, L., Hao, Y., Ma, J., Xu, B., Li, W., J. Mol. Catal. A 151, 205 (2000).Google Scholar
18. Vollath, D., German Patent G9403581.4 (1994).Google Scholar
19. Vollath, D., Szabó, D. V., Nanostr. Mater. 4, 927 (1994).Google Scholar
20. Vollath, D., Szabó, D. V., Seith, B., German Patent DE19638601C1 (1998).Google Scholar
21. Mitra, A., Thareja, R. K., Modern Phys. Letters B, 13, 1075 (1999)Google Scholar
22. Cao, H., Xu, J. Y., Chang, S.-H., Ho, S. T., Phys. Rev. E, 61, 1985 (2000)Google Scholar
23. Lamparth, I., Szabó, D. V., Vollath, D., Macromolecular Symposia, in the printGoogle Scholar