Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T06:59:20.380Z Has data issue: false hasContentIssue false

Fluctuation Model for Structural Relaxation and the Glass Transition

Published online by Cambridge University Press:  10 February 2011

C. T. Moynihan
Affiliation:
Materials Science and Engineering Dept., Rensselaer Polytechnic Institute, Troy, NY 12180–3590, [email protected]
J.-H. Whang
Affiliation:
Materials Science and Engineering Dept., Rensselaer Polytechnic Institute, Troy, NY 12180–3590, [email protected]
Get access

Abstract

The fluctuation or independently relaxing nanoregion model attributes the distribution of structural relaxation times in a glassforming melt to a physical distribution of nanoregions which vary in their properties. A quantitative test of this model is described, in which parameters derived from relaxational data on B2O3 glass are shown to be capable of predicting the anomalous light scattering in the glass transition region. It is also shown that the local inhomogenieties which lead to the distribution of structural relaxation times make only a very minor contribution to the distribution of electrical relaxation times in ionically conducting glasses and melts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moynihan, C. T. et al, Ann. NY Acad. Sci. 279, 15 (1976).Google Scholar
2. Hodge, I. M., J. Non-Cryst. Solids 169, 211 (1994).Google Scholar
3. Moynihan, C. T., Crichton, S. N. and Opalka, S. M., J. Non-Cryst. Solids 131–133, 420 (1991).Google Scholar
4. Moynihan, C. T. and Schroeder, J., J. Non-Cryst. Solids 160, 52 (1993).Google Scholar
5. Boesch, L., Napolitano, A. and Macedo, P. B., J. Am. Ceram. Soc. 53, 148 (1970).Google Scholar
6. Bokov, N. A. and Andreev, N. S., Sov. J. Phys. Chem. Glass 15, 243 (1989).Google Scholar
7. Visser, T. J. M. and Stevels, J. M., J. Non-Cryst. Solids 7, 401 (1972).Google Scholar
8. Macedo, P. B. and Napolitano, A., J. Chem. Phys. 49, 1887 (1968).Google Scholar
9. Angell, C. A., Chem. Rev. 90, 523 (1990).Google Scholar
10. Hasz, W. C., Moynihan, C. T. and Tick, P. A., J. Non-Cryst. Solids 172–174, 1363 (1994).Google Scholar
11. Moynihan, C. T., Boesch, L. P. and Laberge, N. L., Phys. Chem. Glasses 14, 122 (1973).Google Scholar
12. Doremus, R. H., Glass Science. 2nd ed. (Wiley, New York, 1994), p. 272.Google Scholar
13. Boesch, L. P. and Moynihan, C. T., J. Non-Cryst. Solids 17, 44 (1975).Google Scholar
14. Moynihan, C. T., Easteal, A. J., Tran, D. C., Wilder, J. A. and Donovan, E. P., J. Am. Ceram. Soc. 59, 137 (1976).Google Scholar
15. Munro, B., Schrader, M. and Heitjans, P., Ber. Bunsenges. Phys. Chem. 96, 1718 (1992).Google Scholar