Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:06:09.490Z Has data issue: false hasContentIssue false

Flow of Dispersions Near Close Packing

Published online by Cambridge University Press:  21 February 2011

L. Marshall
Affiliation:
IV, Department of Chemical Engineering, University of Illinois, Urbana, Illinois 61801
C. F. Zukoski
Affiliation:
IV, Department of Chemical Engineering, University of Illinois, Urbana, Illinois 61801
Get access

Abstract

The flow of hard sphere-like suspensions near close packing is explored. The change in viscosity with stress and volume fraction shows that at volume fractions above 0.5 shear thickening occurs and that the characteristic shear rates for shear thinning and shear thickening decrease rapidly above this volume fraction. The creep compliance is well characterized by a stretched exponential relaxation time spectrum above volume fractions of 0.52. These results suggest that the limiting volume fraction where the zero shear rate viscosity diverges is determined by a liquid/glass phase transition very similar to that predicted for hard sphere liquids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lange, F. F., J. Am. Ceramic Soc. 66, 396 (1983)Google Scholar
2. Lange, F. F., J. Mat. Energy Systems 6, 107 (1984)Google Scholar
3. Lange, F. F., Davis, B. I. and Aksay, I. A., J. Am. Ceramic Soc. 66, 407 (1983)Google Scholar
4. Barringer, E., Jubb, N., Fegley, B., Pober, R. L. and Bowen, H. K. in Ultrastructural Processing of Ceramics, Glasses and Composites, Hench, L. L. and Ulrich, D. R. Eds., John Wiley and Sons, NY (1984)Google Scholar
5. Sacks, M. D., and Tseng, T-Y, J. Am. Ceramic. Soc. 67 526 and 532 (1984)Google Scholar
6. de Kmif, C. G., van lersel, E. M. F., Vrij, A. and Russel, W. B., J. Chem. Phys 83, 4717 (1986)Google Scholar
7. Farris, R. J., Trans. Soc. Rheol. 12, 281 (1968)Google Scholar
8. van Helden, A., Jensen, J. W. and Vrij, A., J. Colloid Interface Sci. 81, 354 (1981)Google Scholar
9. de Kruif, C. G., Jensen, J. W. and Vrij, A. in ”Physics at Complex and Supra-Molecular Fluids”, edited by Safran, S. A. and Clark, V. A., Wiley, NY 1987 Google Scholar
10. Woodcock, L. V., and Angell, C. A., Phys. Rev. Lett 47, 1129 (1981)Google Scholar
11. Angell, C. A., Clarke, J. H. R. and Woodcock, L. V., Adv. Chem. Phys 48, 397 (1981)Google Scholar
12. Woodcock, L. V., Ann. N.Y. Acad. Sci. 37, 274 (1981)Google Scholar
13. Stossel, J. P., and Wolynes, P. G., J. Chem. Phys. 80, 4502 (1984)Google Scholar
14. Woodcock, L. V., and Chem. Phys. Lett. 111, 455 (1984)Google Scholar
15. Pusey, P. N., and van Megen, W., Phys. Rev. Lett. 59, 2083 (1987)Google Scholar
16. Krieger, I. M., Adv. Colloid Interface Sci. 3, 137 (1972)Google Scholar
17. Clark, N. A., and Ackerson, B. J., Phys. Rev. Lett. 44, 1005 (1980)Google Scholar
18. Fredrickson, G. H., Ann. Rev. Phys. Chem. 39, 149 (1988)Google Scholar