Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:41:38.440Z Has data issue: false hasContentIssue false

Flexible Fibrous Piezo-Electric Sensor on Printed Silver Electrode

Published online by Cambridge University Press:  19 August 2014

Ho Yeon Son
Affiliation:
School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, B.C. Canada V3T 0A3 Department of Materials Science and Engineering, and KAIST Institute for NanoCentury and BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea 305-701
Yoon Sung Nam
Affiliation:
Department of Materials Science and Engineering, and KAIST Institute for NanoCentury and BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea 305-701 KAIST Institute for NanoCentury and BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea 305-701
Woo Soo Kim
Affiliation:
School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, B.C. Canada V3T 0A3
Get access

Abstract

Here we introduce a facile method to fabricate a flexible piezoelectric sensor using one-dimensional (1-D) piezoelectric poly(vinylidene fluoride) (PVDF) nanofibers directly produced onto flexible printed electrodes by electro-spinning without an additional poling process. The flexible silver electrodes are fabricated on polyethylene terephthalate (PET) using silver nanowires by easy and cost-effective spraying deposition. The electrospun PVDF nanofibers have uniaxially aligned arrays on the electrodes by using a rotating collector. The fabricated PVDF piezoelectric sensors demonstrate the piezoelectric responses with repeated mechanical stimuli with good flexibility and high sensitivity. We expect that the facile fabrication of PVDF piezoelectric sensors on flexible printed electrodes can be usefully exploited to integrate the piezoelectric sensors into flexible and stretchable functional electronic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Y. R., Zheng, J. M., Ren, G. Y., Zhang, P. H., and Xu, C., Smart Mater. Struct. 20, 045009 (2011).CrossRefGoogle Scholar
Chang, J., Mommer, M., Chang, C., and Lin, L., Nano Energy 1, 356371 (2012).CrossRefGoogle Scholar
Fang, J., Wang, X., and Lin, T., J. Mater. Chem. 21, 1108811091 (2011).CrossRefGoogle Scholar
Chang, C., Tran, V. H., Wang, J., Fuh, Y.-K., and Lin, L., Nano Lett. 10, 726731 (2010).CrossRefGoogle Scholar
Persano, L., Dagdeviren, C., Su, Y., Zhang, Y., Girardo, S., Pisignano, D., Huang, Y., and Rogers, J. A., Nat. Commun. 4, 1633 (2013).CrossRefGoogle Scholar
Ribeiro, C., Sencadas, V., Ribelles, J. L. G., and Lanceros-Mendez, S., Soft Mater. 8, 274287 (2010).CrossRefGoogle Scholar
Akter, T., and Kim, W. S., ACS Appl. Mater. Interfaces 4, 18551859 (2012).CrossRefGoogle Scholar
Korte, K. E., Skrabalak, S. E., and Xia, Y., J. Mater. Chem. 18, 437441 (2008).CrossRefGoogle Scholar
Zheng, J., He, A., Li, J., and Han, C. C., Macromol. Rapid Commun. 28, 21592162 (2007).CrossRefGoogle Scholar
Cozza, E. S., Monticelli, O., Marsano, E., and Cebe, P., Polym. Int. 62, 4148 (2013).CrossRefGoogle Scholar
Son, H. Y., Park, J. S., Huang, J., Kim, J., Nam, Y. S., and Kim, W. S., IEEE T. Nanotechnol. 13, 709713 (2014).CrossRefGoogle Scholar