Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:02:28.394Z Has data issue: false hasContentIssue false

Flexible Carbon-Based Nanogenerators

Published online by Cambridge University Press:  22 June 2015

Ning-Qin Deng
Affiliation:
Institute of Microelectronics, Tsinghua University, Beijing 100084, China Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China
He Tian
Affiliation:
Institute of Microelectronics, Tsinghua University, Beijing 100084, China Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China
Qing-Tang Xue
Affiliation:
Institute of Microelectronics, Tsinghua University, Beijing 100084, China Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China
Zhe Wang
Affiliation:
Institute of Microelectronics, Tsinghua University, Beijing 100084, China Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China
Hai-Ming Zhao
Affiliation:
Institute of Microelectronics, Tsinghua University, Beijing 100084, China Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China
Shuo Ma
Affiliation:
Institute of Microelectronics, Tsinghua University, Beijing 100084, China Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China
Wen-Tian Mi
Affiliation:
Institute of Microelectronics, Tsinghua University, Beijing 100084, China Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China
Mohammad Ali Mohammad
Affiliation:
Institute of Microelectronics, Tsinghua University, Beijing 100084, China Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China
Yi Yang
Affiliation:
Institute of Microelectronics, Tsinghua University, Beijing 100084, China Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China
Tian-Ling Ren*
Affiliation:
Institute of Microelectronics, Tsinghua University, Beijing 100084, China Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China
Get access

Abstract

Nanogenerators (NGs) have great potential to solve the problems of energy depletion and environmental pollution. Here, two types of flexible nanogenerators (FNGs) based on graphene oxide (GO) and multiwall carbon nanotubes (MW-CNTs) are presented. The peak output voltage and current of GO based FNG reached up to 2 V and 30 nA, respectively, under 15 N force at 1 Hz. Moreover, the output voltage could be improved to 34.4 V when the frequency was increased to 10 Hz. It was also found the output voltage increased from 0.1 V to 2.0 V using a released GO structure. The other FNG was made by MW-CNTs mixed with ZnO nanoparticles (NPs). Its output voltage and power reached up to 7.5 V and 18.75 mW, respectively, which is much larger than that of bare ZnO based FNG. Furthermore, a peak voltage of 30 V could be gained by stamping one’s foot on the FNG. Finally, a modified NG was fabricated using four springs and two flexible layers. As a result, the voltage and power reached up to 9 V and 27mW, respectively. These works may bring out broad applications in energy harvesting.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hudson, M., Environ. Pollut., 15, 677679, (2006).Google Scholar
Ma, W. L., Yang, C. Y., Gong, X., Lee, K. and Heeger, A. J., Adv. Funct. Mater., 15, 16171622, (2005).CrossRefGoogle Scholar
Mcgowan, J., New Sci., 139, 3033, (1993).Google Scholar
Howard-Williams, C., Schwarz, A. M. and Reid, V., Hydrobiologia, 340, 229234, (1996).CrossRefGoogle Scholar
Lang, C., IEEE Spectrum, 40, 1313, (2003).CrossRefGoogle Scholar
Wang, Z. L. and Song, J. H., Science, 312, 242246, (2006).CrossRefGoogle ScholarPubMed
Wang, X. D., Song, J. H., Liu, J. and Wang, Z. L., Science, 316, 102105, (2007).CrossRefGoogle Scholar
Huang, C. T., Song, J. H., Lee, W. F., Ding, Y., Gao, Z. Y., Hao, Y., Chen, L. J. and Wang, Z. L., J. Am. Chem. Soc., 132, 47664771, (2010).CrossRefGoogle Scholar
, R. F., Science, 328, 304305, (2010).CrossRefGoogle Scholar
Park, H. K., Lee, K. Y., Seo, J. S., Jeong, J. A., Kim, H. K., Choi, D. and Kim, S. W., Adv. Funct. Mater., 21, 11871193, (2011).CrossRefGoogle Scholar
Que, R. H., Shao, M. W., Wang, S. D., Ma, D. D. D. and Lee, S. T., Nano Lett., 11, 48704873, (2011).CrossRefGoogle Scholar
Lee, K. Y., Kumar, B., Seo, J. S., Kim, K. H., Sohn, J. I., Cha, S. N., Choi, D., Wang, Z. L. and Kim, S. W., Nano Lett., 12, 19591964, (2012).CrossRefGoogle Scholar
Lee, M., Chen, C. Y., Wang, S., Cha, S. N., Park, Y. J., Kim, J. M., Chou, L. J. and Wang, Z. L., Adv. Mater., 24, 17591764, (2012).CrossRefGoogle Scholar
Wu, W. W., Bai, S., Yuan, M. M., Qin, Y., Wang, Z. L. and Jing, T., ACS Nano, 6, 62316235, (2012).CrossRefGoogle Scholar
Xu, S., Qin, Y., Xu, C., Wei, Y. G., Yang, R. S. and Wang, Z. L., Nat. Nanotechnol., 5, 366373, (2010).CrossRefGoogle Scholar
Choi, D., Choi, M. Y., Shin, H. J., Yoon, S. M., Seo, J. S., Choi, J. Y., ... & Kim, S. W.., Nanoscale, 114, 13791384, (2009).Google Scholar
Hansen, B. J., Liu, Y., Yang, R., & Wang, Z. L, ACS nano, 4, 3647-3652, (2010).CrossRefGoogle Scholar
Shin, H. J., Choi, W. M., Choi, D., Han, G. H., Yoon, S. M., Park, H. K., ... & Lee, Y. H., Journal of the American Chemical Society, 132, 15603-15609, (2010).CrossRefGoogle Scholar
Becerril, H. A., Stoltenberg, R. M., Tang, M. L., Roberts, M. E., Liu, Z. F., Chen, Y. S., Kim, D. H., Lee, B. L., Lee, S. and Bao, Z. A., ACS Nano, 4, 63436352, (2010).CrossRefGoogle Scholar
Cai, G. F., Tu, J. P., Zhang, J., Mai, Y. J., Lu, Y., Gu, C. D. and Wang, X. L., Nanoscale, 4, 57245730, (2012).CrossRefGoogle Scholar
Tian, H., Yang, Y., Xie, D., Ren, T. L., Shu, Y., Zhou, C. J., Sun, H., Liu, X. and Zhang, C. H.,Nanoscale, 5, 890894, (2013).CrossRefGoogle Scholar
Chen, S., Zhu, J. W., Wu, X. D., Han, Q. F. and Wang, X., ACS Nano, 4, 28222830, (2010).CrossRefGoogle Scholar
Que, R., Shao, Q., Li, Q., Shao, M., Cai, S., Wang, S. and Lee, S. T., Angew. Chem., 124, 55145518, (2012).CrossRefGoogle Scholar
Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T. and Ruoff, R. S., Nature, 448, 457460, (2007).CrossRefGoogle Scholar
Fan, F.-R., Tian, Z.-Q. and Lin Wang, Z.,Nano Energy, 1, 328334, (2012).CrossRefGoogle Scholar