Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:37:57.509Z Has data issue: false hasContentIssue false

Flash Memory Scaling: From Material Selection to Performance Improvement

Published online by Cambridge University Press:  01 February 2011

Tuo-Hung Hou
Affiliation:
[email protected], Cornell University, School of Electrical and Computer Engineering, 325 Phillips Hall, Ithaca, NY, 14853, United States
Jaegoo Lee
Affiliation:
[email protected], Cornell University, School of Electrical and Computer Engineering, Ithaca, NY, 14853, United States
Jonathan T. Shaw
Affiliation:
[email protected], Cornell University, School of Electrical and Computer Engineering, Ithaca, NY, 14853, United States
Edwin C. Kan
Affiliation:
[email protected], Cornell University, School of Electrical and Computer Engineering, Ithaca, NY, 14853, United States
Get access

Abstract

Below the 65-nm technology node, scaling of Flash memory, NAND, NOR or embedded, needs smart and heterogeneous integration of materials in the entire device structure. In addition to maintaining retention, in the order of importance, we need to continuously make functional density (bits/cm2) higher, cycling endurance longer, program/erase (P/E) voltage lower (negated by the read disturbance, multi-level possibility and noise margin), and P/E time faster (helped by inserting SRAM buffer at system interface). From both theory and experiments, we will compare the advantages and disadvantages in various material choices in view of 3D electrostatics, quantum transport and CMOS process compatibility.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lim, K. and Choi, J. in Proc. Non-Volatile Semiconductor Memory Workshop, 2006, p. 9.Google Scholar
2. Kinam, K. Choi, J.-H., Choi, J., and Jeong, H.-S., in Proc. VLSI Technology (VLSI-TSA-Tech), 2005, p. 88.Google Scholar
3. Bez, R. and Cappelletti, P. in Proc. VLSI Technology (VLSI-TSA-Tech), 2005, p. 84.Google Scholar
4. Atwood, G. IEEE Trans. Device and Materials Reliability, vol. 4, pp. 301, 2004.Google Scholar
5.International Technology Roadmap for Semiconductors, 2005 edition, [Online]. Available: http://public.itrs.net/Google Scholar
6. Pon, H. in Proc. Int. Solid-State and Integrated Circuit Technology, 2006, p. 697.Google Scholar
7. Kim, J.-H. et al. , in IEDM Tech. Dig., 2006, p. 45.Google Scholar
8. Tehrani, S. in IEDM Tech. Dig., 2006, p. 585.Google Scholar
9. Oh, J. H. et al. , in IEDM Tech. Dig., 2006, p. 49.Google Scholar
10. Shin, Y. in Proc. VLSI Circ. Dig., 2005, p. 156.Google Scholar
11. Geppert, L. IEEE Spectrum, vol. 40, p. 48, 2003.Google Scholar
12. Flaherty, N. IEE Review, vol. 49, pp. 50, 2003.Google Scholar
13. Noguchi, M. et al. , in IEDM Tech. Dig., 2007, p. 445.Google Scholar
14. DeSalvo, B. et al. , IEEE Trans. Device Mater. Rel., vol. 4, p. 377, 2004.Google Scholar
15. Wegener, H. A. R. et al. , in IEDM Tech. Dig., 1967, p. 70.Google Scholar
16. Swift, C. T. et al. , in IEDM Tech. Dig., 2002, p. 927.Google Scholar
17. Lue, H.-T. et al. , in IEDM Tech. Dig., 2005, p. 547.Google Scholar
18. Park, Y. et al. , in IEDM Tech. Dig., 2006, p. 29.Google Scholar
19. Ohba, R. Mitani, Y. Sugiyama, N. and Fujita, S. in IEDM Tech. Dig., 2007, p. 75.Google Scholar
20. Sugizaki, T. et al. , in Symp. VLSI Tech., 2003, p. 27.Google Scholar
21. Tan, Y. Chim, W. Choi, W. Joo, M. Ng, T. and Cho, B. in IEDM Tech. Dig., 2004, p. 889.Google Scholar
22. Lin, Y.-H., Chien, C.-H, Lin, C.-T., Chen, C.-W., Chang, C.-Y., and Lei, T.-F., in IEDM Tech. Dig., 2004, p. 1080.Google Scholar
23. Lai, C. H. et al. , in Symp. VLSI Tech., 2005, p. 210.Google Scholar
24. Wang, Y. Q. et al. , in IEDM Tech. Dig., 2006, p. 971.Google Scholar
25. Wang, X. Liu, J. Bai, W. and Kwong, D.-L., IEEE Trans. Electron Devices, vol. 51, p. 597, 2005.Google Scholar
26. Tiwari, S. Rana, F. Chan, K. Hanafi, H. Chan, W. and Buchanan, D. in IEDM Tech. Dig., 1995, p. 521.Google Scholar
27. Muralidhar, R. et al. , in IEDM Tech. Dig., 2003, p. 601.Google Scholar
28. Salvo, B. De et al. , in IEDM Tech. Dig., 2003, p. 597.Google Scholar
29. Baik, S. Choi, S. Chung, U. I. and Moon, J. T. in IEDM Tech. Dig., 2003, p. 545.Google Scholar
30. Chen, J. H. et al. , IEEE Trans. Electron Devices, vol. 51, p. 1840, 2004.Google Scholar
31. Hou, T. H. Ganguly, U. and Kan, E. C. Appl. Phys. Lett., vol. 89, 253113, 2006.Google Scholar
32. Liu, Z. Lee, C. Narayanan, V. Pei, G. and Kan, E. C. IEEE Trans. Electron Devices, vol. 49, p. 1606, 2002.Google Scholar
33. Lee, C. Gorur-Seetharam, A., and Kan, Edwin C. in IEDM Tech. Dig., 2003, p. 557.Google Scholar
34. Lee, C. Meteer, J. Narayanan, V. and Kan, E. C. J. Electronic Materials, vol. 34, p. 1, 2005.Google Scholar
35. Lee, J. J. and Kwong, D.-L. IEEE Trans. Electron Devices, vol. 52, p. 507, 2005.Google Scholar
36. Yeh, P. H. et al. , J. Vac. Sci. Technol. A, vol. 23, p. 851, 2005.Google Scholar
37. Zhu, Y. Zhao, D. Li, R. and Liu, J. Appl. Phys. Lett., 88, 103507, 2006.Google Scholar
38. Lu, X. B. and Dai, J. Y. Appl. Phys. Lett., 88, 113104, 2006.Google Scholar
39. Ohba, R. Sugiyama, N. Uchida, K. Koga, J. and Toriumi, A. IEEE Trans. Electron Devices, vol. 49, p. 1392, 2002.Google Scholar
40. Takata, M. et al. , in IEDM Tech. Dig., 2003, p. 553.Google Scholar
41. Tang, S. Mao, C. Liu, Y. Kelly, D. Q. and Banerjee, S. K. in IEDM Tech. Dig., 2005, p. 181.Google Scholar
42. Guarini, K. W. Black, C. T. Zhang, Y. Babich, I. V. Sikorski, E. M. and Gignac, L. M. in IEDM Tech. Dig., 2003, p. 541.Google Scholar
43. Rao, C.N.R. Kulkarni, G. U. Thomas, P. J. and Edwards, P. P. Chem. Eur. J., vol. 8, p. 29, 2002.Google Scholar
44. She, M. and King, T.-J. IEEE Trans. Electron Devices, vol. 50, p. 1934, 2003.Google Scholar
45. Liu, Y. Tang, S. and Banerjee, S. K. Appl. Phys. Lett., 88, 213504, 2006.Google Scholar
46. Yang, Y. and White, M. H. Solid-state Electron., vol. 44, p. 949, 2000.Google Scholar
47. Lee, C. Ganguly, U. Narayanan, V. Hou, T.-H. and Kan, E. C. IEEE Electron Device Lett., vol. 26, p. 879, 2005.Google Scholar
48. Hou, T.-H, Lee, C. Narayanan, V. Ganguly, U. and Kan, E. C. IEEE Trans. Electron Devices, vol. 53, p. 3095, 2006.Google Scholar
49. Hou, T.-H, Lee, C. Narayanan, V. Ganguly, U. and Kan, E. C. IEEE Trans. Electron Devices, vol. 53, p. 3103, 2006.Google Scholar
50. Hou, T. H. Lee, C. and Kan, E. C. in Device Research Conf. Dig. 2007, p.221.Google Scholar
51. Perniola, L. et al. , IEEE Trans. Nanotechnol., vol. 2, p. 277, 2003.Google Scholar
52. Gusmeroli, R. Compagnonia, C. M. and Spinellia, A. S. Microelectronic Eng., vol. 84, p. 2869, 2007.Google Scholar
53. Huang, S. Arai, K. Usami, K. and Oda, S. IEEE Trans. Nanotech., vol. 3, p. 210, 2005.Google Scholar
54. Lee, C. Hou, T-H, and Kan, E. IEEE Trans. Electron Devices, vol. 52, p. 2697, 2005.Google Scholar
55. Yang, N. Henson, W. K. Hauser, J. R. and Wortman, J. J. IEEE Trans. Electron Devices, vol. 46, p. 1464, 1999.Google Scholar
56. Likharev, K. K. Appl. Phys. Lett. vol. 73, p. 2137, 1998.Google Scholar
57. Blomme, P. Govoreanu, B. Rosmeulen, M. Houdt, J. Van, and DeMeyer, K. IEEE Electron Device Lett., vol. 24, p. 99, 2003.Google Scholar
58. Compagnoni, C. M. Ielmini, D. Spinelli, A. S. and Lacaita, A. L. IEEE Trans. Electron Devices, vol. 52, p. 2473, 2005.Google Scholar
59. Fischetti, M. V. Neumayer, D. A. and Cartier, E. A. J. Appl. Phys., vol. 90, p. 4587, 2001.Google Scholar
60. Mistry, K. et al. in IEDM Tech. Dig., 2007, p. 247.Google Scholar
61. Lee, W.-H. Clemens, J. T. Keller, R. C. and Manchanda, L. in Symp. VLSI Tech. Dig., 1997, p. 117.Google Scholar
62. Lee, C. H. Choi, K. I. Cho, M. K. Song, Y. H. Park, K. C. and Kim, K. in IEDM Tech. Dig., 2003, p. 613.Google Scholar
63. Robertson, J. J. Vac. Sci. Technol., B vol. 18, p. 1785, 2000.Google Scholar
64. Hou, T. H. Ganguly, U. and Kan, E. C. IEEE Electron Device Letters, vol. 28, p.103, 2007.Google Scholar
65. Burnett, D. Shum, D. and Baker, K. in IEDM Tech. Dig., 1998, p. 983.Google Scholar
66. Xuan, P. She, M. Harteneck, B. Liddle, A. Bokor, J. and King, T.-J. in IEDM Tech. Dig., 2003, p. 609.Google Scholar
67. Silva, H. M.Kim, K. Kumar, A. Avci, U. Tiwari, S. in IEDM Tech. Dig., 2003, p. 271.Google Scholar
68. Jung, S.-M. et al. , in IEDM Tech. Dig., 2006, p. 37.Google Scholar
69. Lai, E.-K. et al. , in IEDM Tech. Dig., 2006, p. 41.Google Scholar
70. Fukuzumi, Y. et al. , in IEDM Tech. Dig., 2007, p. 449.Google Scholar
71. Saitoh, M. Nagata, E. and Hiramoto, T. Appl. Phys. Lett., vol. 82, p. 1787, 2003.Google Scholar
72. Ganguly, U. Kan, E. C. and Zhang, Y. Appl. Phys. Lett., vol. 87, 43108, 2005.Google Scholar
73. Ganguly, U. Lee, C. Hou, T. H. and Kan, E. C. IEEE Trans. Nanotech., vol. 6, p. 22, 2007.Google Scholar