Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T13:48:43.213Z Has data issue: false hasContentIssue false

Flame spray synthesis of tin oxide nanoparticles for gas sensing

Published online by Cambridge University Press:  01 February 2011

Thorsten Sahm
Affiliation:
Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
Lutz Mädler
Affiliation:
Particle Technology Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Sonneggstrasse 3, CH-8092 Zürich, Switzerland.
Alexander Gurlo
Affiliation:
Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
Nicolae Barsan
Affiliation:
Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
Sotiris E. Pratsinis
Affiliation:
Particle Technology Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Sonneggstrasse 3, CH-8092 Zürich, Switzerland.
Udo Weimar
Affiliation:
Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
Get access

Abstract

Tin oxide nanoparticles for gas sensing application have been synthesized with an aerosol method. The particles were manufactured with the versatile Flame spray Pyrolysis (FSP) method producing highly crystalline powders with closely controlled a primary particle and crystallite size of 10 nm and 17 nm. The single crystalline particles were only slightly aggregated and directly used for thick film sensor deposition by drop coating and screen printing.The flame made SnO2 nanoparticles showed high and rapidresponse to reducing gases such as propanal and CO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Barsan, N. and Weimar, U., J. Phys.-Condes. Matter 15, R813–R839 (2003).Google Scholar
[2] Sahm, T., Mädler, L., Gurlo, A., Barsan, N., Pratsinis, S. E., and Weimar, U., Sens. Actuator B-Chem. 98, 148153 (2004).Google Scholar
[3] Mädler, L., Kammler, H. K., Mueller, R., and Pratsinis, S. E., Journal of Aerosol Science 33, 369389 (2002).Google Scholar
[4] Mädler, L., Stark, W. J., and Pratsinis, S. E., Journal of Materials Research 17, 13561362 (2002).Google Scholar
[5] Mädler, L., Stark, W. J., and Pratsinis, S. E., Journal of Materials Research 18, 115120 (2003).Google Scholar
[6] Strobel, R., Stark, W. J., Mädler, L., Pratsinis, S. E., and Baiker, A., J. Catal. 213, 296304 (2003).Google Scholar
[7] Bolzan, A. A., Fong, C., Kennedy, B. J., and Howard, C. J., Acta Crystallogr. Sect. B-Struct. Commun. 53, 373380 (1997).Google Scholar
[8] Cheary, R. W. and Coelho, A., J. Appl. Crystallogr. 25, 109121 (1992).Google Scholar
[9] Hall, D. L., Torek, P. V., Schrock, C. R., Palmer, T. R., and Wooldridge, M. S., Metastable, Mechanically Alloyed and Nanocrystalline Materials 386–3, 347352 (2002).Google Scholar
[10] Madou, M. J. and Morrison, S. R., Chemical sensing with solid state devices (Academic Press Inc., Boston, 1989).Google Scholar