Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T16:17:05.862Z Has data issue: false hasContentIssue false

First-Principles Theory of Cation and Intercalation Ordering in LixCoO2

Published online by Cambridge University Press:  10 February 2011

C. Wolverton
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Alex Zunger
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Get access

Abstract

Several types of cation- and vacancy-ordering exist in the LixCoO2 battery material. The ordering patterns are of interest due to the fact that they can control the voltage in rechargeable Li batteries. We present a first-principles total energy theory which can predict both cation-and vacancy-ordering patterns at both zero and finite temperatures. Also, by calculating the energetics of the Li intercalation reaction, this theory can provide first-principles predictions of battery voltages of Lix;CoO2/Li cells. Our calculations allow us to search the entire configurational space to predict the lowest-energy ground state structures, search for large voltage cathodes, explore metastable low-energy states, and extend our calculations to finite temperatures, thereby searching for order-disorder transitions and states of partial disorder.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hewston, T. A. and Chamberland, B. L., J. Phys. Chem. Solids 48, 97 (1987).10.1016/0022-3697(87)90076-XGoogle Scholar
2. Mizushima, K., Jones, P. C., Wiseman, P. J., and Goodenough, J. B., Mat. Res. Bull. 15, 783 (1980).10.1016/0025-5408(80)90012-4Google Scholar
3. Wolverton, C. and Zunger, A., Phys. Rev. B 57 (1998, in press);Google Scholar
J. Electrochem. Soc. (1998, submitted)Google Scholar
4. Singh, D. J., Planewaves, Pseudopotentials, and the LAPW Method, (Kluwer, Boston, 1994).10.1007/978-1-4757-2312-0Google Scholar
5. de Fontaine, D., Solid State Physics 47, 33 (1994).10.1016/S0081-1947(08)60639-6Google Scholar
6. Zunger, A., in Statics and Dynamics of Alloy Phase Transformations, edited by Turchi, P. E. A. and Gonis, A., NATO ASI Series (Plenum, New York, 1994).Google Scholar
7. Binder, K., Z. Phys. B 45, 61 (1981);10.1007/BF01294277Google Scholar
Chin, K. K. and Landau, D. P., Phys. Rev. B 36, 275 (1987).10.1103/PhysRevB.36.275Google Scholar
8. McKinnon, W. R. and Haering, R. R., in Modem Aspects of Electrochemistry, edited by White, R. E., Backris, J. O'M., and Conway, B. E. (Plenum, New York, 1983), Vol. 15, p. 235.10.1007/978-1-4615-7461-3_4Google Scholar
9. Reimers, J. N. and Dahn, J. R., Phys. Rev. B 47, 2995 (1993).10.1103/PhysRevB.47.2995Google Scholar
10. Solid State Batteries: Materials Design and Optimization, Julien, C. and Nazri, G. -A., eds. Kluwer, Boston (1994), Chap. 1.10.1007/978-1-4615-2704-6Google Scholar
11. Aydinol, M. K., Kohan, A. F., Ceder, G., Cho, K., and Joannopoulos, J., Phys. Rev. B 56, 1354 (1997).10.1103/PhysRevB.56.1354Google Scholar
12. Rossen, E., Reimers, J. N., and Dahn, J. R., Solid State Ionics 62, 53 (1993).10.1016/0167-2738(93)90251-WGoogle Scholar
13. Gummow, R. J., Liles, D. C., and Thackeray, M. M., Mat. Res. Bull. 28, 235 (1993).10.1016/0025-5408(93)90157-9Google Scholar
14. Amatucci, G. G., Tarascon, J. M., and Klein, L. C., J. Electrochem. Soc. 143, 1114 (1996).10.1149/1.1836594Google Scholar
15. Antaya, M., Cearns, K., Preston, J. S., Reimers, J. N., and Dahn, J. R., J. Appl. Phys. 76, 2799 (1994).10.1063/1.357514Google Scholar
16. Reimers, J. N., Dahn, J. R., and von Sacken, U., J. Electrochem. Soc. 140, 2752 (1993); J. Electrochem. Soc. 139, 2091 (1992).10.1149/1.2220905Google Scholar