Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T22:18:42.604Z Has data issue: false hasContentIssue false

First-Principles Study on Hydrogen Atom Hopping in NaAlH4

Published online by Cambridge University Press:  31 January 2011

Hao Wang
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology(AIST), Research Institute for Computational Sciences, Tsukuba, Japan
Akinori Tezuka
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology(AIST), Research Institute for Computational Sciences, Tsukuba, Ibaraki, Japan
Hiroshi Ogawa
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology(AIST), Research Institute for Computational Sciences, Tsukuba, Ibaraki, Japan
Tamio Ikeshoji
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology(AIST), Research Institute for Computational Sciences, Tsukuba, Japan
Get access

Abstract

Hydrogen vacancy effect on the activation energy for self-diffusion is investigated by NEB method. The path was calculated by moving a hydrogen atom from a nearby complex into the vacancy in another complex. Compared with the substitution enthalpy of hydrogen vacancy, the activation energy for self-diffusion is easier to achieve during the dehydrogenation process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schlapbach, L. and Zttel, A., Nature 414, 353358 (2001).Google Scholar
2. Bogdanovic, B. and Schwickardi, M. J. Alloys Compd. 253 1(1997).Google Scholar
3. Oriele, P. Rosario, C. Annalisa, P. Jensen, C. M. and Srinivasan, S. S. J. Phys. Chem. B109, 11681173 (2005).Google Scholar
4. Íniguez, J. and Yildirim, T. J. Phys.: Condens. Matter 19 176007(2007).Google Scholar
5. Ishibashi, S. Terakura, K. and Hosono, H. J. Phys. Soc. Jpn. 77 053709(2008).Google Scholar
6. Perdew, J. P. and Wang, Y. Phys. Rev. B45, 1324413249 (1992).Google Scholar
7. Perdew, J. P. Burke, K. and Ernzerhof, M. Phys. Rev. Lett. 77, 38653868 (1996).Google Scholar
8. Jûnsson, H., Mills, G. and Jacobsen, K. W. in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by Berne, B. J. Ciccotti, G. and Coker, D. F. (World Scientific, Singapore, 1998), p. 385.Google Scholar
9. Henkelman, G. Uberuaga, B. P. and Jûnsson, H., J. Chem. Phys. 113, 9901(2000).Google Scholar
10. Henkelman, G. and Jûnsson, H., J. Chem. Phys. 113, 9978(2000).Google Scholar
11. Palumbo, O. Cantelli, R. Paolone, A. Jensen, C. M. and Srinivasan, S. S. J. Alloys Compd. 404406, 748(2005).Google Scholar