Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T03:05:22.742Z Has data issue: false hasContentIssue false

First-Principles Study on Diffusion of Cd in CuInSe2

Published online by Cambridge University Press:  29 August 2013

Tsuyoshi Maeda
Affiliation:
Department of Materials Chemistry, Ryukoku University, Seta, Otsu 520-2194, Japan
Takahiro Wada
Affiliation:
Department of Materials Chemistry, Ryukoku University, Seta, Otsu 520-2194, Japan
Get access

Abstract

We have investigated the migration energy of Cd atom in CuInSe2 (CIS) with a Cu vacancy by first-principles calculations. The activation energy of Cd migration in CIS and migration pathways are obtained by means of the combination of linear and quadratic synchronous transit (LST/QST) methods and nudged elastic band (NEB) method. The theoretical migration energy of Cd atom in CIS is 0.99 eV. The migration energy of Cd atom (Cd→VCu) in CIS is comparable to that of Cu migration (Cu→VCu) in CIS (1.06 eV). This result indicates that Cd diffusion in CIS easily occurs like Cu diffusion.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wada, T., Hayashi, S., Hashimoto, Y., Nishiwaki, S., Sato, T., Negami, T. and Nishitani, M., Proc. 2nd World Conf. Photovoltaic Engineering Conversion, 1998, p. 403.Google Scholar
Ramanathern, K., Wiesner, H., Asher, S., Niles, D., Bhattacharya, R. N., Keane, J., Contreras, M. A., and Noufi, R.: Proc. 2nd World Conf. Photovoltaic Engineering Conversion, 1998, p. 477.Google Scholar
Nakada, T. and Kunioka, A., Appl. Phys. Lett. 74, 26 (1999).CrossRefGoogle Scholar
Maeda, T. and Wada, T., Jpn. J. Appl. Phys., accepted.Google Scholar
Nakamura, S., Maeda, T., and Wada, T., Jpn. J. Appl. Phys. 52, 04CR01 (2013).CrossRefGoogle Scholar
Delley, B., J. Chem. Phys. 92, 508 (1990).CrossRefGoogle Scholar
Delley, B., J. Phys. Chem. 100, 6107 (1996).CrossRefGoogle Scholar
Delley, B., J. Chem. Phys. 113, 7756 (2000).CrossRefGoogle Scholar
Delley, B., Int. J. Quantum Chem. 69, 423 (1998).3.0.CO;2-2>CrossRefGoogle Scholar
Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 1588 (1976).CrossRefGoogle Scholar
Halgren, T. A. and Lipscomb, W. N., Chem. Phys. Lett. 49, 225 (1977).CrossRefGoogle Scholar
Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D., and Andzelm, J., Comput. Mater. Sci. 28, 250 (2003).CrossRefGoogle Scholar
Henkelman, G. and Jonsson, H., J. Chem. Phys. 113, 9978 (2000).CrossRefGoogle Scholar
Hiepko, K., Bastek, J., Schlesiger, R., Schmitz, G., Wuerz, R., and Stolwijk, N. A., Appl. Phys. Lett. 99, (2011) 234101.CrossRefGoogle Scholar
Ogborn, J., Marshall, R., and Lawrence, I., Advancing Physics: A2 Student Book Second Edition, (Oxford University Press, Oxford, 2008).Google Scholar
Pohl, J. and Albe, K., J. Appl. Phys. 108, 023509 (2010).CrossRefGoogle Scholar
Yamazoe, S., Kou, H., and Wada, T., J. Mater. Res. 26, 1504 (2011).CrossRefGoogle Scholar