Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:52:53.010Z Has data issue: false hasContentIssue false

First-Principles Study of Point-Defect Production in Si and SiC

Published online by Cambridge University Press:  10 February 2011

W. Windl
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
T. J. Lenosky
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
J. D. Kress
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
A. F. Voter
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

We have calculated the displacement-threshold energy Ed for point-defect production in Si and SiC using empirical potentials, tight-binding, and first-principles methods. We show that—depending on the knock-on direction—64-atom simulation cells can be sufficient to allow a nearly finite-size-effect-free calculation, thus making the use of first-principles methods possible. We use molecular dynamics (MD) techniques and propose the use of a sudden approximation which agrees reasonably well with the MD results for selected directions and which allows estimates of Ed without employing an MD simulation and the use of computationally more demanding first-principles methods. We compare our results for Ed with the available experimental values. Furthermore, we have examined the temperature dependence of Ed for C in SiC and found it to be negligible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 For recent reviews on theoretical treatment of radiation damage, see, e.g., Clinard, F.W. Jr, Mater. Res. Soc. Bull. 22 (4), 11 (1997);Google Scholar
Díaz de la Rubia, T., Annu. Rev. Mater. Sci. 26, 613 (1996);Google Scholar
Albertson, L.M., Averback, R.S., Tappin, D.K., and Rehn, L.E., Fundamentals of Radiation Damage (North-Holland, Amsterdam, 1994);Google Scholar
Weber, W.J., Mansur, L.K., Clinard, F.W. Jr, and Parkin, D.M., J. Nucl. Mater. 184, 1 (1991).Google Scholar
2 Caturla, M.J., Díaz de la Rubia, T., and Gilmer, G.H. in Materials synthesis and processing using ion beams, edited by Culbertson, R.J. et al. (Mater. Res. Soc. Proc. 316, Pittsburgh, PA, 1994), p. 111.Google Scholar
3 Miller, L.A., Brice, D.K., Prinja, A.K., and Picraux, S.T., Phys. Rev. B 49, 16953 (1994); Radiation Effects and Defects in Solids 129, 127 (1994).Google Scholar
4 Wong, J., Díaz de la Rubia, T., Guiñan, M.W., Tobin, M., Perlado, J.M., Perez, A.S., and Sanz, J., J. Nucl. Mater. 212, 143 (1994).Google Scholar
5 Devanathan, R., Díaz de la Rubia, T., and Weber, W.J., Nucl. Inst, and Meth. in Phys. Res. B (in print).Google Scholar
6 El-Azab, A. and Ghoniem, N.M., J. Nucl. Mater. 191–194, 1110 (1992).Google Scholar
7 Ziegler, J.F., Handbook of Ion Implantation Technology (North-Holland, Amsterdam, 1992).Google Scholar
8 Hopkins, G.R. and Chin, J., J. Nucl. Mater. 141–143, 148 (1986).Google Scholar
9 Demkov, A.A., Ortega, J., Sankey, O.F., and Grumbach, M.P., Phys. Rev. B 52, 1618 (1995);Google Scholar
Sankey, O.F., Demkov, A.A., Windl, W., Fritsch, J.H., Lewis, J.P., and Fuentes-Cabrera, M., Int. J. Quantum Chem. (in print).Google Scholar
10 Windl, W., Lenosky, T. J., Kress, J. D., and Voter, A. F., Nucl. Inst. and Meth. in Phys. Res. B (in print).Google Scholar
11 Lenosky, T.J., Kress, J.D., Kwon, I., Voter, A.F., Edwards, B., Richards, D.F., Yang, S., and Adams, J.B., Phys. Rev. B 55, 1528 (1997).Google Scholar
12 Perdew, J. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
13 Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).Google Scholar
14 Tersoff, J., Phys. Rev. B 38, 9902 (1988); 39, 5566 (1989).Google Scholar
15 Levine, R.D. and Bernstein, R.B., Molecular Reaction Dynamics (Oxford University Press, New York, 1974).Google Scholar
16 Windl, W., Lenosky, T.J., Kress, J.D., and Voter, A.F. (to be published).Google Scholar
17 Our Tersoff results for SiC are different from the ones previously calculated in Ref. 4, where the same potential was employed, for reasons we do not yet understand.Google Scholar
18 Windl, W., Sankey, O. F., and Menéndez, J., Phys. Rev. B (in print).Google Scholar
19 Loferski, J.J. and Rappaport, P., Phys. Rev. 111, 432 (1958);Google Scholar
Sigmund, P., Appl. Phys. Lett. 14, 114 (1969).Google Scholar
20 Hemment, P.L.F. and CS, P.R.C. in Atomic Collision Phenomena in Solids, edited by Palmer, D.W., Thompson, M.W., and Townsend, P.D. (North-Holland, Amsterdam 1970), pp. 217231;Google Scholar
Banbury, P.C. and Haddad, I.N., Phil. Mag. 14, 841 (1966);Google Scholar
Kelly, B.T., Irradiation Damage to Solids (Pergamon, New York, 1966), p. 4.Google Scholar
21 Hart, R.R., Dunlap, H.L., and Marsh, O.J., radiation effects 9, 261 (1971);Google Scholar
Zinkle, S.J. and Kinoshita, C., J. Nucl. Mater, (in print) and references therein.Google Scholar
22 Loubser, J.H.N., de sousa Balóna, J.A., and van Ryneveld, W.P., Mat. Res. Bull. 4, 249 (1969).Google Scholar