Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T07:53:43.939Z Has data issue: false hasContentIssue false

First-principles Study of Nitrogen Vacancies in GdN

Published online by Cambridge University Press:  08 March 2011

Atchara Punya
Affiliation:
Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH-44106-7079
Tawinan Cheiwchanchamnangij
Affiliation:
Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH-44106-7079
Alexander Thiess
Affiliation:
Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH-44106-7079 German Research School for Simulation Sciences, 52428 Jülich, Germany Institute for Solid State Research and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
Walter R. L. Lambrecht
Affiliation:
Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH-44106-7079
Get access

Abstract

The electronic structure of nitrogen vacancies in gadolinium nitride are studied using the full-potential linearized muffin-tin orbital method in the local spin density approximation with Hubbard U corrections (LSDA+U). The vacancy is found to have two localized defect levels in the gap, one of each spin. The third electron of each vacancy in the neutral state dopes the conduction band. The single positive state is found to be the ground state for Fermi levels located anywhere within the band gap. The vacancy has a net magnetic moment of 1 μB in the neutral charge state. The presence of the vacancy is found to increase the average exchange interactions between Gd atoms and hence the Curie temperature but only by about a factor 2 compared to GdN without vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Larson, P. and Lambrecht, W. R. L., Phys. Rev. B 74, 085108 (2006).Google Scholar
2. Ghosh, D. B., De, M., and De, S. K., Phys. Rev. B 72, 045140 (2005).Google Scholar
3. Trodahl, H. J., Preston, A. R. H., Zhong, J., Ruck, B. J., Strickland, M., Mitra, C. and Lambrecht, W. R. L., Phys. Rev. B 76, 085211 (2007).Google Scholar
4. Granville, S., Ruck, B. J., Budde, F., Koo, A., Pringle, D. J.. Kuchler, F., Preston, A. R. H., Housden, D. H., Lund, N., Bittar, A., Williams, G. V. M., and Trodahl, H. J., Phys. Rev. B 73, 235335 (2006).Google Scholar
5. Wachter, P. and Kaldis, E., Solid State Commun. 34, 241 (1980).Google Scholar
6. Li, D. X., Haga, Y., Shida, H., Suzuki, T., Kwon, Y. S., and Kido, G., J. Phys. : Condens. Matter 9, 10777 (1997).Google Scholar
7. Leuenberger, F., Parge, A., Felsch, W., Fauth, K., and Hessler, M., Phys. Rev. B 72, 014427 (2005).Google Scholar
8. Leuenberger, F., Parge, A., Felsch, W., Baudelet, F., Giorgetti, C., Dartyge, E., and Wilhelm, F., Phys. Rev. B 73, 214430 (2006).Google Scholar
9. Kasuya, T. and Li, D. X., J. Magn. Magn. Mater. 167, L1 (1997).Google Scholar
10. Duan, C.-G., Sabyrianov, R. F., Mei, W. N., Dowben, P.E., Jaswal, S. S., and Tsymbal, E. Y., Appl. Phys. Lett. 88, 182505 (2006).Google Scholar
11. Mitra, C. and Lambrecht, W. R. L., Phys. Rev. B 78, 134421 (2008).Google Scholar
12. Liechtenstein, A. I., Katsnelson, M. I., Antropov, V. P., and. Gubanov, V. A., J. Magn. Magn. Mater. 67, 65 (1987).Google Scholar
13. Methfessel, M., van Schilfgaarde, M., and Casalli, R. A., in Electronic structure and Physical Properties of Solids, The Uses of the LMTO Method, edited by Dreyssé, Hugues, Lecture Notes in Physics Vol. 535 (Springer-Verlag, Berlin 2000), p. 114.Google Scholar
14. Liechtenstein, A. I., Anisimov, V. I., and Zaanen, J., Phys. Rev. B 52, 5467(R) (1995).Google Scholar
15. Leslie, M. and Gillan, M. J., J. Phys. C: Solid State Phys. 18, 973 (1985).Google Scholar
16. Makov, G. and Payne, M. C., Phys, Rev. B 51, 4014 (1995).Google Scholar
17. Mitra, C. and Lambrecht, W. R. L., Phys. Rev. B 78, 195203 (2008).Google Scholar