Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T09:31:36.621Z Has data issue: false hasContentIssue false

First-Principles Study of Domain Evolution of IR on IR(111)

Published online by Cambridge University Press:  21 February 2011

M. Habar
Affiliation:
L. P. S. E., F. S. T., Université de Haute Alsace, 4 rue des Frères Lumière, 68093 Mulhouse Cedex, France
S. Ouannasser
Affiliation:
L. P. S. E., F. S. T., Université de Haute Alsace, 4 rue des Frères Lumière, 68093 Mulhouse Cedex, France I. P. C. M. S., Université Louis Pasteur, 23 rue du Loess, 67037 Strasbourg, Cedex, France
L. Stauffer
Affiliation:
L. P. S. E., F. S. T., Université de Haute Alsace, 4 rue des Frères Lumière, 68093 Mulhouse Cedex, France
H. Dreyssé
Affiliation:
I. P. C. M. S., Université Louis Pasteur, 23 rue du Loess, 67037 Strasbourg, Cedex, France
L. T. Wille
Affiliation:
I. P. C. M. S., Université Louis Pasteur, 23 rue du Loess, 67037 Strasbourg, Cedex, France Department of Physics, Florida Atlantic University, Boca Raton, FL 33431
Get access

Abstract

We have calculated the effective cluster interactions (ECI) which govern the ordering of Ir adatoms on the Ir(111) surface. The computations are based on a tight-binding Hamiltonian in which no adjustable or experimentally determined parameters were introduced. Both atoms adsorbed in ‘bulk’ sites (i.e. continuing the fee lattice) and those in ‘surface’ sites (i.e. producing hep stacking) are considered. We use this formalism to determine the relative stability of various adsorption sites and cluster shapes at zero temperature. The overall trends are in excellent agreement with the experimental results found by Ehrlich and co-workers. Next, we employ these ECI in Monte Carlo simulations of the kinetics of domain growth and evolution. Specifically we analyze the effect of diffusion barriers and the competition between the ordering tendencies of the system and entropic effects. Typical ‘snapshots’ in a range of temperatures and coverages are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wang, S. C. and Ehrlich, G., Phys. Rev. Lett. 62, 2297 (1989).Google Scholar
2 Wang, S. C. and Ehrlich, G., Surf. Sci. 217, L397 (1989).Google Scholar
3 Wang, S. C. and Ehrlich, G., Phys. Rev. Lett. 70, 41 (1993).Google Scholar
4 Piveteau, B., Spanjaard, D., and Desjonquères, M. C., Phys. Rev. B 46, 7121 (1992).Google Scholar
5 De Lorenzi, G. and Ehrlich, G., Surf. Sci. 293, L900 (1993).Google Scholar
6 Liu, S., Zhang, Z., Nørskov, J., and Metiu, H., Surf. Sci. 321, 161 (1994).Google Scholar
7 de Fontaine, D., Solid State Physics 47, 33 (1994).Google Scholar
8 Dreyssé, H., Berera, A., Wille, L. T., and de Fontaine, D., Phys. Rev. B 39, 2442 (1989).Google Scholar
9 Dreyssé, H., Wille, L. T., and de Fontaine, D., Phys. Rev. B 47, 62 (1993).Google Scholar
10 Harrision, W. A., Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Freeman, San Francisco, 1980.Google Scholar
11 Rosato, V., Guillope, M., and Legrand, B., Phil. Mag. A 59, 321 (1989).Google Scholar
12 Habar, M., Ouannasser, S., Stauffer, L., Dreyssé, H., and Wille, L. T., Surf. Sci. (in press).Google Scholar
13 Sanchez, J. M., Ducastelle, F., and Gratias, D., Physica A 128, 334 (1984).Google Scholar
14 Soler, J. M., Phys. Rev. B 50, 5578 (1994).Google Scholar
15 Black, J. E. and Tian, Z. J., Phys. Rev. Lett. 71, 2445 (1993).Google Scholar