Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:24:29.764Z Has data issue: false hasContentIssue false

First-principles Study of Bias Effect on Magnetoresistance of Fe/MgO/Fe Tunnel Junctions

Published online by Cambridge University Press:  09 May 2013

Ning Deng
Affiliation:
Institute of Microelectronics, Tsinghua University, Beijing 100084, P. R.China
Hongguang Cheng
Affiliation:
Institute of Microelectronics, Tsinghua University, Beijing 100084, P. R.China
Get access

Abstract

We studied the transport properties of the Fe/MgO/Fe and Fe/Ag/MgO/Ag/Fe magnetic tunnel junctions (MTJs) with 13-layer MgO barrier under bias voltage based on first-principles calculations. Our results showed that two features determine the TMR value decreases with bias of Fe/MgO/Fe MTJ: (1) interfacial states lying at 1.06 eV in spin down channel (2) the energy level of the spin down Δ1 band of the Fe electrode. Our results showed that an inserted Ag mono-layer at Fe/MgO interface can remarkably improve the TMR effect at a high bias voltage.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Parkin, S. S. P., Kaiser, C., Panchula, A., Rice, P. M., Hughes, B., Samant, M. and Yang, S., Nat. Mater. 3, 862 (2004).CrossRefGoogle Scholar
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. and Ando, K., Nat. Mater. 3, 868 (2004).CrossRefGoogle Scholar
Mavropoulos, P., Papanikolaou, N., and Dederichs, P. H., Phys. Rev. Lett. 85, 1088 (2000).CrossRefGoogle Scholar
Butler, W. H., Zhang, X.-G., Schulthess, T. C., and MacLaren, J. M., Phys. Rev. B 63, 054416 (2001).CrossRefGoogle Scholar
Tiusan, C., Sicot, M., Hehn, M., Belouard, C., Andrieu, S., Montaigne, F. and Schuhl, A., Appl. Phys. Lett., 88, 062512 (2006).CrossRefGoogle Scholar
Ando, Y., Miyakoshi, T., Oogane, M., Miyazaki, T., Kubota, H., Ando, K. and Yuasa, S., Appl. Phys. Lett., 87, 142502 (2005).CrossRefGoogle Scholar
Waldron, D., Timoshevskii, V., Hu, Y., Xia, K. and Guo, H., Phys. Rev. Lett., 97, 226802(2006).CrossRefGoogle Scholar
Rungger, I., Mryasov, O. and Sanvito, S., Phys. Rev. B, 79, 094414 (2009).CrossRefGoogle Scholar
Cazorla, C., and Stengel, M., Phys. Rev. B, 85, 075426 (2012)CrossRefGoogle Scholar
Soler, J. M., Artacho, E., Gale, J. D., Garc´ıa, A., Junquera, J., Ordej´on, P., and S´anchez-Portal, D., J. Phys.: Condens. Matter 14, 2745 (2002).Google Scholar
Brandbyge, M., Mozos, J.-L., Ordej´on, P., Taylor, J., and Stokbro, K., Phys. Rev. B 65, 165401 (2002).CrossRefGoogle Scholar
Büttiker, M., Imry, Y., Landauer, R., and Pinhas, S., Phys. Rev. B 31, 6207 (1985).CrossRefGoogle Scholar
Wulfhekel, W., Klaua, M., Ullmann, D., Zavaliche, F., Kirschner, J., Urban, R., Monchesky, T., and Heinrich, B., Appl. Phys. Lett., 78, 509 (2001).CrossRefGoogle Scholar
Zermatten, P. J., Gaudin, G., Maris, G., Miron, M., Schuhl, A., Tiusan, C., Greullet, F. and Hehn, M., Phys. Rev. B, 78, 033301 (2008).CrossRefGoogle Scholar
Raza, T. Z., Cerda, J. I. and Raza, H., J. Appl. Phys., 109, 023705 (2011).CrossRefGoogle Scholar
Belashchenko, K. D., Velev, J., and Tsymbal, E. Y., Phys. Rev. B, 72, 140404 (2005).CrossRefGoogle Scholar
Stiles, M. D., J. Appl. Phys., 79, 5805 (1996).CrossRefGoogle Scholar