Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:04:32.392Z Has data issue: false hasContentIssue false

First-principles Studies of Phase Stability and the Neutral Atomic Vacancies in LiNbO3, NaNbO3 and KNbO3

Published online by Cambridge University Press:  26 February 2011

Akio Shigemi
Affiliation:
[email protected], Ryukolku University, Materials Chemistry, 1-5 Yokotani Setaoe Cho, Otsu, Shiga, 520-2194, Japan, +81-77-543-7686, +81-77-543-7483
Takahiro Wada
Affiliation:
[email protected], Ryukoku University, Materials Chemistry, Japan
Get access

Abstract

We overall evaluated the enthalpies of formation and the formation energies of neutral vacancies in ANbO3 (A = Li, Na, K) using a plane-wave pseudopotential method within a density functional formalism. The LiNbO3 phase with the LiNbO3-type structure was confirmed to have lower enthalpy of formation than that with perovskite- or ilmenite-type structure. The NaNbO3 (R3c) and KNbO3 (Bmm2 and R3m) phases with the lowest symmetry were found to have the lowest enthalpy of formation. The formation energy of a A vacancy was found to be the lowest under an oxidizing atmosphere and that of an O vacancy was found to be the lowest under a reducing atmosphere. The formation energy of a Nb vacancy was the highest under both oxygen-rich and -poor conditions. These results are in agreement with the empirical rule that B site defects in perovskite-type oxide do not exist.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kumada, N., Ozawa, N., Muto, F. and Kinomura, N., J. Solid State Chem. 57, 267 (1985).Google Scholar
2 Mehta, A., Navrotsky, A., Kumada, N. and Kinomura, N., J. Solid State Chem. 102, 213 (1993).Google Scholar
3 Shiozaki, Y., Nakamura, E. and Mitsui, T.: Landolt-Börnstein (Springer-Verlag, Berlin Heidelberg, New York, 2001) vol. III/36A1, p. 67.Google Scholar
4 Kus, C., Ptak, V. S., Smiga, W., Ferroelectrics 124, 249 (1991).Google Scholar
5 Shirane, G., Newnham, R. E. and Pepinsky, R., Phys. Rev. 96, 581 (1954).Google Scholar
6 Shigemi, A. and Wada, T., Jpn. J. Appl. Phys., to be submitted.Google Scholar
7 Shigemi, A. and Wada, T., Jpn. J. Appl. Phys. 43, 6793 (2004).Google Scholar
8 Shigemi, A. and Wada, T., Jpn. J. Appl. Phys. 43, 8048 (2005).Google Scholar
9 Milman, V., Winkler, B., White, J. A., Pickard, C. J., Payne, M. C., Akhmatskaya, E. V. and Nobes, R. H., Int. J. Quantum Chem. 77, 895 (2000).Google Scholar
10 Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J. and Fiolhais, C., Phys. Rev. B 46, 6671(1992).Google Scholar
11 Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
12 Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
13 Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
14 Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
15 Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P.: Numerical Recipes (Cambridge University Press, Cambridge, 1992) 2nd ed., p. 418.Google Scholar
16 Barrett, C. S., Meyer, L. and Wasserman, J., J. Chem. Phys. 47, 592 (1967).Google Scholar
17 Kubaschewski, O., Alcock, C. B. and Spencer, P. J.: Materials Thermochemistry (Pergamon Press, Oxford, 1993) 6th ed., p. 167.Google Scholar
18 Kubaschewski, O., Alcock, C. B. and Spencer, P. J.: Materials Thermochemistry (Pergamon Press, Oxford, 1993) 6th ed., p. 257.Google Scholar
19 Pozdnyakova, I., Navrotsky, A., Shilkina, L. and Reznitchenko, L., J. Am. Ceram. Soc. 85, 379 (2002).Google Scholar